![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Тени от точки, прямой и плоской фигуры.Тень от точки будет там, где луч света, проходящий через точку, пересечёт поверхность, на которую падает тень. Пусть точка A задана двумя ортогональными проекциями A1 и A2, а направление светового луча задано его аксонометрической проекцией r и вторичной проекцией r1 (рис. 5.3). Для построения аксонометрии тени от точки A на плоскость хOy построим изометрическую проекцию точки по трём координатам хА, yА, zА. Затем через точку A проводим луч параллельно проекции r светового луча, а через её вторичную проекцию A1 проводим прямую параллельно вторичной проекции луча r1. Пересечение этих двух прямых и определяет аксонометрию тени A0 от точки A на плоскость хOy . На рис. 5.4 показано построение аксонометрии тени от точки A на горизонтально-проецирующую плоскость BCDE. Для этого через точку A проведена вспомогательная горизонтально-проецирующая плоскость Σ (A11| | r1 , A2| | r1). Определяется линия пересечения 1-2 =BCDE
На рис. 5.5 приведено построение тени от прямой общего положения AB и от горизонтально-проецирующей прямой CD на плоскость хOy в прямоугольной изометрии при заданных направлениях r и r1. Падающие тени от прямых AB и CD строим по двум точкам, принадлежащим каждой из них. Из точек A, B, C, D проводим лучи, параллельные r, а из точек A1, B1, C1, D1 проводим лучи, параллельные r1. В результате пересечения пар соответствующих прямых находим тени A0B0 и C0D0 от прямых AB и CD. При этом тень C0D0 совпадает по направлению с вторичной проекцией r1 луча r. Отметим некоторые свойства теней прямых: 1) Тень отрезка прямой равна и параллельна самому отрезку, когда прямая параллельна плоскости, на которую она отбрасывает тень. 2) Параллельные прямые имеют параллельные тени. 3) Прямая будет иметь тень в виде точки, если её направление совпадает с направлением светового луча. 4) Если отрезок перпендикулярен плоскости проекций, его тень на этой плоскости будет совпадать с одноимённой проекцией светового луча.
Если плоскость фигуры расположена параллельно световым лучам, то её тенью будет прямая линия. Тень от плоской фигуры на параллельную ей плоскость равна этой фигуре. Не нашли, что искали? Воспользуйтесь поиском:
|