ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Правила дифференцирования и интегрирования
Это новая функция времени. Определим ее изображение по преобразованию Лапласа.
Воспользуемся методом интегрирования по частям:
Введем обозначения
Здесь второе слагаемое есть изображение оригинала, умноженное на оператор p, первое слагаемое раскрывается следующим образом. При подстановке верхнего предела первый сомножитель стремится к нулю. Второй сомножитель может стремиться к бесконечности. Однако все электротехнические функции стремятся к бесконечности медленнее, чем первый сомножитель к нулю. Поэтому произведение равно нулю. Подстановка нижнего предела дает начальное условие. Таким образом
Окончательно:
Если начальные условия нулевые, т.е. – f (0) = 0, то
Применим преобразование Лапласа к данной функции
Этот интеграл можно взять так же по частям. Но если t= 0, то ψ (0) = 0. Тогда
Интегрированию оригинала соответствует делению изображения функции на оператор р.
Не нашли, что искали? Воспользуйтесь поиском:
|