ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Сложение и вычитание действительных чиселПусть некоторое число х Î R + сначала изменили на а, а потом на в, причем число х настолько велико, что оба эти изменения не выводят из множества R +. Назовем суммой чисел а и в действительное число, выражающее результирующее изменение. Например, если сначала сделать изменение на 4, а потом на 7, число 12 перейдет сначала в 16, а потом 16 перейдет в 23. Но чтобы 12 перешло в 23, надо изменить его на 11, значит, 4 + 7 = 11, как и должно быть. Если же сначала сделать изменение на –4, а потом на –7, то 12 перейдет сначала в 8; а потом в 1. Но чтобы из 12 получить 1, надо изменить 12 на –11. Отсюда следует, что (–4) + (–7) = –11. Вообще, если а и в – положительные действительные числа и Рассмотрим теперь сложение чисел противоположных знаков. Начнем со случая, когда слагаемые – противоположные числа. Очевидно, что если изменить число х сначала на а, а потом на – а, то получим снова х. Иными словами, х + (а + (– а)) = х. Так как, с другой стороны, и х + 0 = х, то надо положить а + (– а) = 0. Итак, сумма противоположных чисел равна нулю. Теперь найдем сумму а + (– в) в общем случае (мы считаем, что а и в – положительные числа, а потому – в отрицательно). Если а > в, то Пусть теперь а < в. В этом случае мы имеем – в = (– а)+ (–(в – а)), и потому а + (– в) = а + (– а) + (–(в – а)) = – (в – а). Значит, при a < в надо положить а + (– в) = – (в – а). Тот же результат получится при сложении – в и а: (– в) + а = –(в – а). Полученные правила сложения действительных чисел можно сформулировать в виде следующего определения. Определение. При сложении двух действительных чисел одного и того же знака получится число того же знака, модуль которого равен сумме модулей слагаемых. При сложении чисел различного знака получается число, знак которого совпадает со знаком слагаемого, имеющего больший модуль, а модуль равен разности большего и меньшего модулей слагаемых. Сумма противоположных чисел равна нулю, а сложение с нулем не меняет числа. Легко проверить, что сложение в R обладает свойствами коммутативности, ассоциативности и сократимости. Из данного выше определения видно, что нуль – нейтральный элемент относительно сложения, т.е. а + 0= а. Вычитание в множестве R определяется как операция, обратная сложению. Поскольку каждое число в в R имеет противоположное ему число – в, такое, что в + (– в) = 0, то вычитание числа в равносильно сложению с числом – в: а – в = а + (– в).
В самом деле, для любых а и в имеем: (а + (– в)) + в = а + ((– в) + в) = а, а это и означает, что а – в = а + (– в). Для положительных чисел а и в, таких, что а > в, их разность Длина отрезка, идущего из точки в в точку а, равна | а – в |. Введем в множество R отношение порядка. Будем считать, что Нетрудно доказать, что если а > в, то для любого с Î R имеем Не нашли, что искали? Воспользуйтесь поиском:
|