Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Законы Рауля. Закон Вант-Гоффа




Свойства растворов, которые зависят только от концентрации частиц в растворе и не зависят от природы растворенного вещества, называются коллигативными.

Растворы, образованные частицами строго одинакового размера, между которыми действуют примерно одинаковые силы межмолекулярного взаимодействия, не происходит химического взаимодействия, изменения температуры и объема называются идеальными. К идеальным растворам стремятся очень разбавленные растворы.

К коллигативным свойствам растворов относятся:

· давление насыщенного пара растворителя над раствором;

· температура замерзания (кристаллизации) раствора;

· температура кипения раствора;

· осмотическое давление.

Коллигативные свойства разбавленных растворов могут быть описаны количественно и выражены в виде законов.

При данной температуре давление насыщенного пара над каждой жидкостью – величина постоянная. При растворении в жидкости какого-либо вещества это давление понижается. Закон Рауля (1887г): относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворённого вещества:

N= (Pо- P) / Pо ,

где N - мольная доля растворённого вещества; P0 - давление насыщенного пара растворителя над чистым растворителем (кПа), P - давление насыщенного пара растворителя над раствором (кПа).

Рауль установил, что разбавленные растворы имеют более высокую температуру кипения по сравнению с температурой кипения чистого растворителя и более низкую температуру замерзания по сравнению с температурой замерзания чистого растворителя.

Понижение температуры (Δtзам) замерзания раствора:

Δtзам= K·Cm,

где К - криоскопическая постоянная растворителя, Cm - моляльная концентрация раствора.

 

tзам(р-ра) = tзам(р-ля) - Δtзам

Криоскопия - метод исследования жидких растворов нелетучих веществ, основанный на измерении понижения температуры замерзания раствора по сравнению с температурой замерзания чистого растворителя.

Повышение температуры кипения (Δtкип) раствора:

Δtкип= E·Cm,

где Е - эбуллиоскопическая постоянная растворителя, Cm - моляльная концентрация раствора.

 

tкип(р-ра) = tкип(р-ля) + Δtкип

Эбуллиоскопия - метод изучения жидких растворов нелетучих веществ, основанный на измерении повышения температуры кипения раствора по сравнению с температурой кипения чистого растворителя.

Криоскопическая постоянная К и эбуллиоскопическая постоянная Е – табличные величины, для воды К(Н2О)=1,86кг∙К/моль, Е(Н2О)=0,52 кг∙К/моль.

Диффузия – самопроизвольный процесс перемещения вещества, приводящий к выравниванию его концентрации. При диффузии частицы растворителя и растворенного вещества диффундируют в противоположных направлениях, поэтому является встречным, двусторонним процессом. Односторонняя диффузия растворителя в раствор через полупроницаемую перегородку называется осмосом. Объём раствора в результате осмоса увеличивается, при этом возникает давление на стенки сосуда, в котором находится раствор. Это давление называется осмотическим (Pосм,, кПа). Закон Вант-Гоффа:

Pосм= См·R·T ,

где См – молярная концентрация, R – универсальная газовая постоянная (8,31 Дж/моль∙К), T – температура, К.

 

СМ=m11∙V, тогда Pосм=m1R·T/М1∙V

Однако водные растворы электролитов (солей, кислот, оснований) не подчиняются законам Рауля и Вант-Гоффа - они имеют более повышенные точки кипения и более пониженные точки замерзания, завышенное осмотическое давление, чем следует из расчетов по соответствующим формулам. Примером может служить 0,1М раствор хлористого натрия. Расчетное понижение температуры замерзания этого раствора по формуле Рауля должно быть равно 0,186°С, а определенное опытным путем оказалось равным 0,34° С, т. е. опытная величина превышает расчетную почти в два раза.

Для того чтобы свойства растворов электролитов удовлетворительно описывались законами Вант-Гоффа и Рауля, в соответствующие расчетные формулы был введен поправочный коэффициент i, так называемый изотонический коэффициент или коэффициент Вант-Гоффа.

Если для неэлектролитов: Pосм = CМ∙R∙T, Δtзам = K∙Cm, Δtкип = Е∙Cm, то для растворов электролитов: Pосм = i∙CМ∙R∙T, Δtзам = i∙K∙Cm, Δtкип = i∙Е∙Cm

Изотонический коэффициент показывает, во сколько раз реальное число частиц растворенного вещества больше, чем теоретически ожидаемое (если предполагать, что вещество в растворе присутствует только в виде молекул). Для идеальных растворов электролитов i >1.

Между изотоническим коэффициентом i и степенью диссоциации α существует определенная связь:

 

1+α(n -1) или α =(i-1)/( n -1),

 

где n — число ионов, на которые распадается при диссоциации молекула электролита (для KCl n=2, для ВаС12 и Na2SO4 n=3 и т. д.).

Изотонические растворы – имеют равное осмотическое давление. Гипертонические растворы – имеют большее осмотическое давление по сравнению с другим раствором. Гипотонические растворы – имеют меньшее осмотическое давление по сравнению с другим раствором.

Осмотическое давление биологических жидкостей в различных организмах неодинаково, так осмотическое давление у лягушек несколько ниже, чем у человека, а у некоторых морских животных, обитающих в воде со значительным содержанием солей оно выше. Известно, что в тканях растений, всасывающих воду из почвы, осмотическое давление достигает 5-20 атм, а у некоторых растений пустынь и солончаков - даже 170 атм (1 атм=101,3кПа).






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных