ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Особенности познавательных действий в современной науке. Математизация и компьютеризация как факторы интеграции и развития научного знания.
Одна из важных закономерностей развития науки - усиление и нарастание сложности и абстрактности научного знания, углубление и расширение процессов математизации и компьютеризации науки как базы новых информационных технологий, обеспечивающих совершенствование форм взаимодействия в научном сообществе. История познания показывает, что практически в каждой частной науке на определенном этапе ее развития начинается (иногда весьма бурный) процесс математизации. Особенно ярко это проявилось в развитии естественных и технических наук (характерный пример - создание новых "математизированных" разделов теоретической физики). Но этот процесс захватывает и науки социально-гуманитарные - экономическую теорию, историю, социологию, социальную психологию и др., и чем дальше, тем больше. Например, в настоящее время психология стоит на пороге нового этапа развития - создания специализированного математического аппарата для описания психических явлений и связанного с ними поведения человека. В психологии все чаще формулируются задачи, требующие не простого применения существующего математического аппарата, но и создания нового. В современной психологии сформировалась и развивается особая научная дисциплина - математическая психология. Применение количественных методов становится все более широким в исторической науке, где благодаря этому достигнуты заметные успехи. Возникла даже особая научная дисциплина - клиометрия (буквально - измерение истории), в которой математические методы выступают главным средством изучения истории. Вместе с тем надо иметь в виду, что как бы широко математические методы ни использовались в истории, они для нее остаются только вспомогательными методами, но не главными, определяющими. Масштаб и эффективность процесса проникновения количественных методов в частные науки, успехи математизации и компьютеризации во многом связаны с совершенствованием содержания самой математики, с качественными изменениями в ней. Современная математика развивается достаточно бурно, в ней появляются новые понятия, идеи, методы, объекты исследования и т.д., что, однако, не означает "поглощения" ею частных наук. В настоящее время одним из основных инструментов математизации научно-технического прогресса становится математическое моделирование. Его сущность и главное преимущество состоит в замене исходного объекта соответствующей математической моделью и в дальнейшем ее изучении (экспериментированию с нею) на ЭВМ с помощью вычислительно-логических алгоритмов. Творцы науки убеждены, что роль математики в частных науках будет возрастать по мере их развития. "Кроме того, - отмечает академик А. Б. Мигдал, - в будущем в математике возникнут новые структуры, которые откроют новые возможности формализовать не только естественные науки, но в какой-то мере и искусство" [1]. Самое важное, по его мнению, здесь в том, что математика позволяет сформулировать интуитивные идеи и гипотезы в форме, допускающей количественную проверку.
Не нашли, что искали? Воспользуйтесь поиском:
|