Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Параллелепипед и его свойства.




Параллелепипедом называется призма, в основании которой параллелограмм.
Параллелепипед называется прямым, если его боковые ребра перпендикулярны основаниям.
Параллелепипед называется наклонным, если его боковые ребра не перпендикулярны основаниям.
Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.

У параллелепипеда противолежащие грани параллельны и равны.

Доказательство

Возьмем любые две противолежащие грани параллелепипеда: A1A2A2`A1` и A3A4A4`A3`. Так как все грани параллелепипеда – параллелограммы, то прямая A1A2 параллельна прямой A4A3, а прямая A1A1` параллельна прямой A4A4`. Следовательно плоскости рассматриваемых граней параллельны.
Так как грани параллелепипеда – параллелограммы, то отрезки A1A4, A1`A4`, A2`A3` и A2A3 – параллельны и равны. Следовательно грань A1A2A2`A1` совмещается параллельным переносом вдоль ребра A1A4 с гранью A3A4A4`A3` и, значит, грани равны.
Точно также доказывается параллельность и равенство других противолежащих граней параллелепипеда. Теорема доказана.


58. Пирамида. Основные элементы: основание, боковое ребро, высота, боковая грань. Правильная пирамида. Усеченная пирамида.

Пирамидой называется многогранник, который состоит из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания, - вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания. Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами. Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань – треугольник. Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Пирамида называется правильной, если её основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Осью правильной пирамиды называется прямая, содержащая её высоту. У правильной пирамиды боковые ребра равны, боковые грани – равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из её вершины, называется апофемой. Боковой поверхностью пирамиды называется сумма площадей её боковых граней.

Усеченная пирамида. Плоскость, пересекающая пирамиду и параллельная её основанию, отсекает подобную пирамиду.







Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных