Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Понятие вектора. Линейные операции над векторами.




Вектором наз. упорядоченная совокупность чисел Х={X1,X2,...Xn} вектор дан в n-мерном пространстве. Т(X1,X2,X3). n=1,2,3. Геометрический вектор - направленный отрезок. |AB|=|a| - длинна. 2 вектора наз. коллинеарными, если они лежат на 1 прямой или ||-ных прямых. Векторы наз. компланарными, если они лежат в 1-ой плоскости или в ||-ных плоскостях. 2 вектора равны, когда они коллинеарны, сонаправленны, и имеют одинак-ую длинну.

Линейные операции над векторами обладают следующими свойствами:

1. а+b=b+а

2. (а +b) +с=а + (b +с),

3. λ1 • (λ2 •а) =λ1 •λ2 •а,

4. (λ1 +λ2) •а =λ1 •а +λ2 •а,

5. λ • (а +b) =λ •а+λ •b.

15. Координаты вектора.

На плоскости координаты вектора v относительно данного базиса (a, b) – это такая пара чисел (x; y), что v = x a + y b. Любой вектор имеет однозначно определенные координаты относительно любого базиса.

При сложении векторов складываются их соответственные координаты; при умножении вектора на число каждая координата умножается на это число. Скалярное произведение векторов с координатами (x; y) и (x'; y') равно сумме произведений соответственных координат: xx' + yy'.

Чтобы вычислить координаты вектора , зная координаты (x 1; y 1) его начала A и координаты (x 2; y 2) его конца B, нужно из координат конца вычесть координаты начала: (x 2x 1; y 2y 1).

Все сказанное справедливо и для случая пространства с той разницей, что базис в пространстве состоит из трех векторов, а наборы координат векторов и точек – из трех чисел.

 

 

16..Скалярное произведение векторов и его свойства.

Скалярным произведением двух ненулевых векторов называется число, равное произведению этих векторов на косинус угла между ними.

 

 

1.

2.

3.

4.

5.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных