Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Определение понятий




Появление в математике новых понятий, а значит, и новых терминов, обозначающих эти понятия, предполагает их определение.

Определением обычно называют предложение, разъясняющее суть нового термина (или обозначения). Как правило, делают это на основе ранее введенных понятий. Например, прямоугольник можно определить так: «Прямоугольником называется четырехугольник, у которого все углы прямые». В этом определении есть две части - определяемое понятие (прямоугольник) и определяющее понятие (четырехугольник, у которого все углы прямые). Если обозначить через а первое понятие, а через b - второе, то данное определение можно представить в таком виде:

а есть (по определению) b.

Слова «есть (по определению)» обычно заменяют символомÛ, и

тогда определение выглядит так:

аÛb

Читают: «а равносильно b по определению». Можно прочитать эту запись еще и так: «а тогда и только тогда, когда b».

Определения, имеющие такую структуру, называются явными. Рассмотрим их подробнее.

Обратимся опять к определению прямоугольника, вернее, к его второй части - определяющему понятию. В нем можно выделить:

1) понятие «четырехугольник», которое является родовым по отношению к понятию «прямоугольник»,

2) свойство «иметь все углы прямые», которое позволяет выделить из всевозможных четырехугольников один вид - прямоугольники; поэтому его называют видовым отличием.

Вообще видовое отличие - это свойства (одно или несколько), которые позволяют выделять определяемые объекты из объема родового понятия.

 

 

Итоги нашего анализа можно представить в виде схемы

 

1)

Заметим, что в наглядном представлении структуры определения через род и видовое отличие мы допустили некоторые неточности. Во-первых, слова «родовое понятие» означают, что речь идет о родовом понятии по отношению к определяемому. Во-вторых, не совсем ясно, что означает знак «+», который, как известно, используется для обозначения сложения чисел. Смысл этого знака станет понятным немного позже, когда мы рассмотрим математический смысл союза «и». А пока познакомимся с еще одной возможностью наглядного представления определения через род и видовое отличие. Если определяемое понятие обозначить буквой а, определяющее буквой b, родовое понятие (по отношению к определяемому) - буквой с, а видовое отличие - буквой Р, то определение через род и видовое отличие можно представить так:

 
 

(2)

Почему видовое отличие обозначено заглавной буквой, мы узнаем несколько позже, в § 3.

Нам известно, что любое понятие имеет объем. Если понятие а определено через род и видовое отличие (2), то о его объеме - множестве А - можно сказать, что в нем содержатся такие объекты, которые принадлежат множеству С (объему родового понятия с) и обладают свойством Р:

А = {х | хÎ С и Р(х)}.

Например, если дано определение: «Острым углом называется угол, который меньше прямого», - то объем понятия «острый угол» -это подмножество множества всех углов плоскости, которые обладают свойством «быть меньше прямого».

Так как определение понятия через род и видовое отличие является по существу условным соглашением о введении нового термина для замены какой-либо совокупности известных терминов, то об определении нельзя сказать, верное оно или неверное; его не доказывают и не опровергают. Но, формулируя определения, придерживаются ряда правил. Назовем основные.

1. Определение должно быть соразмерным. Это означает, что объемы определяемого и определяющего понятий должны совпадать. Это правило вытекает из того, что определяемое и определяющее понятия взаимозаменяемы.

Например, несоразмерно такое определение квадрата: «Квадратом называется четырехугольник, у которого все стороны равны». Действительно, объем определяемого понятия - множество квадратов. Объем определяющего понятия - множество четырехугольников, все стороны которых равны, а это множество ромбов. Но не всякий ромб есть квадрат, т.е. объемы определяемого и определяющего понятия не совпадают, и, следовательно, данное определение несоразмерно.

2. В определении (или их системе) не должно быть порочного круга. Это означает, что нельзя определять понятие через само себя (в определяющем не должно содержаться определяемого термина) или определять его через другое, которое, в свою очередь, определять через него.

Например, содержат порочный круг определения: «Равные треугольники - это треугольники, которые равны», «Касательная к окружности - это прямая, которая касается окружности».

Так как в математике рассматривают не просто отдельные понятия, а их систему, то данное правило запрещает порочный круг и в системе определений. В соответствии с ним нельзя определять понятие а, выбрав в качестве родового понятия с, а понятие с - через понятие а.

Например, если определить окружность как границу круга, а круг как часть плоскости, ограниченную окружностью, то мы будем иметь порочный круг в определениях данных понятий.

3. Определение должно быть ясным. Это на первый взгляд очевидное правило, но означает оно многое. Прежде всего, требуется, чтобы значения терминов, входящих в определяющее понятие, были известны к моменту введения определения нового понятия.

Например, нельзя определять прямоугольник как параллелограмм с прямым углом, если понятие «параллелограмм» еще не рассмотрено.

К условиям ясности определения относят также рекомендацию включать в видовое отличие лишь столько свойств, сколько необходимо и достаточно для выделения определяемых объектов из объема родового понятия.

Рассмотрим, например, такое определение прямоугольника: «Прямоугольником называется четырехугольник, у которого все углы прямые и противоположные стороны равны».

Нетрудно убедиться в том, что это определение соразмерное и в нем нет порочного круга. Но можно доказать, что свойство «в прямоугольнике противоположные стороны равны» вытекает из свойства «в прямоугольнике все углы прямые». В этом случае считают, что в данном определении прямоугольника второе свойство избыточное.

Таким образом, чтобы определение было ясным, желательно, чтобы оно не содержало избыточных свойств в определяющей части, т.е. таких свойств, которые могут быть выведены из других, включенных в это определение. Однако иногда для простоты изложения это правило нарушают.

Для обеспечения ясности определения важно также наличие понятия, родового по отношению к определяемому. Пропуск родового понятия делает определение несоразмерным. Неприемлемо, например, такое определение квадрата: «Квадрат - это когда все стороны равны».

К сказанному следует добавить, что, формулируя определение, надо стремиться в определяющем указывать не просто родовое по отношению к определяемому понятие, а ближайшее. Это часто позволя­ет сократить количество свойств, включаемых в видовое отличие.

Например, если для определения квадрата в качестве родового выбрать понятие «четырехугольник», то тогда надо будет включать в видовое отличие два свойства: «иметь все прямые углы» и «иметь все равные стороны». В результате получим определение: «Квадратом называется четырехугольник, у которого все углы прямые и все стороны равны».

Если же в качестве родового выбрать ближайшее для квадрата родовое понятие - прямоугольник, то получим более короткое определение квадрата: «Квадратом называется прямоугольник, у которого все стороны равны».

4. Одно и то же понятие определить через род и видовое отличие, соблюдая сформулированные выше правила, можно по-разному. Так, квадрат можно определить как:

а) прямоугольник, у которого соседние стороны равны;

б) прямоугольник, у которого диагонали взаимно перпендикулярны;

в) ромб, у которого есть прямой угол;

г) параллелограмм, у которого все стороны равны, а углы прямые.

Различные определения одного и того же понятия возможны потому, что из большого числа свойств, входящих в содержание понятия, в определение включаются только некоторые. И когда из возможных определений выбирают одно, исходят из того, какое из них проще и целесообразнее для дальнейшего построения теории.

Если же одному и тому же понятию даются, например, два разных определения, то необходимо доказывать их равносильность, т.е. убеждаться в том, что из свойств, включенных в одно определение, вытекают свойства, включенные в другое, и наоборот.

Завершая рассмотрение определений понятий через род и видовое отличие, назовем ту последовательность действий, которую мы должны соблюдать, если хотим воспроизвести определение знакомого понятия или построить определение нового:

1. Назвать определяемое понятие (термин).

2. Указать ближайшее родовое (по отношению к определяемому) понятие.

3. Перечислить свойства, выделяющие определяемые объекты из объема родового, т.е. сформулировать видовое отличие.

4. Проверить, выполнены ли правила определения понятия (соразмерно ли оно, нет ли порочного круга и т.д.).

При изучении математики в начальных классах определения через род и видовое отличие используют редко. Связано это как с особенностями курса, так и с возможностями детей. Но понятий в начальном курсе математики очень много - об этом мы говорили в самом начале параграфа. Как же их определяют?

При изучении математики в начальной школе чаще всего используют так называемые неявные определения. В их структуре нельзя выделить определяемое и определяющее. Среди них различают контекстуальные и остенсивные.

В контекстуальных определениях содержание нового понятия раскрывается через отрывок текста, через контекст, через анализ конкретной ситуации, описывающей смысл вводимого понятия. Посред­ством контекста устанавливается связь определяемого понятия с другими, известными, и тем самым косвенно раскрывается его содержание. Примером контекстуального определения может быть определение уравнения и его решения, приведенное в учебнике математики для II класса (Моро М.И., Бантова М.А. Математика: Учеб. для 2 класса трехлетней начальной школы. - М.: Просвещение, 1987. - С. 196). Здесь после записи — + 6 = 15 и перечня чисел 0, 5, 9, 10 идет текст: «К какому числу надо прибавить 6, чтобы получилось 15? Обозначим неизвестное число латинской буквой х (икс):

х + 6 = 15 - это уравнение.

Решить уравнение - значит найти неизвестное число. В данном уравнении неизвестное число равно 9, так как 9 + 6=15.

Объясни, почему числа 0, 5 и 10 не подходят».

Из приведенного текста следует, что уравнение - это равенство, в котором есть неизвестное число. Оно может быть обозначено буквой х и это число надо найти. Кроме того, из этого текста следует, что решение уравнения - это число, которое при подстановке вместо х обращает уравнение в верное равенство.

Остенсивные определения - это определения путем показа. Они используются для введения терминов путем демонстрации объектов, которые этими терминами обозначают. Например, таким способом можно определить в начальной школе понятия равенства и неравенства:

2×7>2×6 9×3 = 27

78 - 9 < 78 6×4 = 4×6

37 + 6 > 37 17-5 = 8 + 4

Это неравенства. Это равенства.

 

Остенсивные определения, как и контекстуальные, характеризуются некоторой незавершенностью. Действительно, определение посредством показа не выделяет числовые равенства (неравенства) из других предложений, в нем не указываются свойства, характерные для данных понятий. Они только связывают термины с определяемыми объектами. Поэтому после контекстуального или остенсивного определения понятия необходимо дальнейшее изучение свойств так определенных объектов.

 

Упражнения

1. Переформулируйте следующие определения, используя слова «тогда и только тогда, когда»:

а) Четным называется число, которое делится на 2.

б) Множество А называется подмножеством множества В, если каждый элемент множества А принадлежит множеству В.

в) Множества А и В называются равными, если А ÌВ и ВÌА.

г) Треугольником называется фигура, которая состоит их трех точек, не лежащих на одной прямой, и трех попарно соединяющих их отрезков.

2. В следующих определениях выделите определяемое и определяющее понятия, родовое понятие (по отношению к определяемому) и видовое отличие:

а) Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.

в) Отрезок, соединяющий середины двух сторон треугольника, называется его средней линией.

3. Назовите все свойства, которые содержатся в видовом отличии каждого из следующих определений:

а) Биссектрисой угла называется луч, выходящий из вершины угла и делящий угол пополам.

в) Прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.

4. Соразмерны ли следующие определения:

а) Остроугольным треугольником называется треугольник, у которого есть острый угол.

в) Прямоугольным треугольником называется треугольник, у которого есть прямой угол.

5. Учащийся определил прямой угол как угол, стороны которого взаимно перпендикулярны, а взаимно перпендикулярные прямые как прямые, образующие при пересечении прямые углы. Какую ошибку допустил учащийся?

6. Есть ли логические ошибки в следующих определениях? Если можете, исправьте их.

а) Прямоугольником называется четырехугольник, у которого противоположные стороны равны.

б) Биссектрисой угла называется прямая, делящая угол пополам.

в) Сложением называется действие, при котором числа складываются.

г) Равносторонним треугольником называется треугольник, у которого равны все стороны и все углы.

д) Параллелограммом называется многоугольник, у которого противоположные стороны попарно параллельны.

7. Дайте определение: тупоугольного треугольника, равнобедренного треугольника, трапеции. Какие понятия вы выбрали в качестве родового в каждом случае? Какие свойства включили в видовое отличие?

8. Сформулируйте определение прямоугольника, используя в качестве родового понятия «четырехугольник». Пользуясь этим определением, объясните, почему фигуры F1, F3 и F4, изображенные на рисунке 31, можно назвать прямоугольниками, а фигуру F2 - нет.

9. Понятие «противоположные стороны прямоугольника» в начальном курсе математики можно определить так: «Красным цветом обозначены две противоположные стороны прямоугольника, а синим цветом - две другие противоположные стороны» (все это показано на рисунке).

Какой способ определения понятия использован?

10. Выясните, каким способом определяются в различных учебниках по математике для начальных классов понятия:

а) выражение; г) четное число;

б) сумма; д) однозначное число;

в) слагаемое; е) умножение.

 

§3. МАТЕМАТИЧЕСКИЕ ПРЕДЛОЖЕНИЯ

 

Изучая реальные процессы, математика описывает их, используя как естественный словесный язык, так и свой символический. Описание строится при помощи предложений. Но чтобы математические знания были достоверными, правильно отражали окружающую нас реальность, эти предложения должны быть истинными.

Но как узнать, истинное или ложное знание заключено в том или ином математическом предложении? На этот и другие вопросы, с ним связанные, мы попытаемся ответить в данном параграфе. А сейчас только заметим, что каждое математическое предложение характеризуется содержанием и логической формой (структурой), причем содержание неразрывно связано с формой, и нельзя осмыслить первое, не понимая второго. В связи с этим изучение математических предложений в главе «Элементы логики» будет в основном связано с раскрытием логической структуры математических предложений.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных