ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
О РАСШИРЕНИИ МНОЖЕСТВА НАТУРАЛЬНЫХ ЧИСЕЛБольшинство применений математики связано с измерением величин. Однако для этих целей натуральных чисел недостаточно: не всегда единица величины укладывается целое число раз в измеряемой величине. Чтобы в такой ситуации точно выразить результат измерения, необходимо расширить запас чисел, введя числа, отличные от натуральных. К этому выводу люди пришли еще в глубокой древности: измерение длин, площадей, масс и других величин привело сначала к возникновению дробных чисел – получили рациональные числа, а в V в до н.э. математиками школы Пифагора было установлено, что существуют отрезки, длину которых при выбранной единице длины нельзя выразить рациональным числом. Позднее, в связи с решением этой проблемы, появились числа иррациональные. Рациональные и иррациональные числа назвали действительными. Строгое определение действительного числа и обоснование его свойств было давно в XIX в. Взаимосвязи между различными множествами чисел (N, Z, Q и R) можно изобразить наглядно при помощи кругов Эйлера (рис. 127). Действительные числа - не последние в ряду различных чисел. Процесс, начавшийся с расширения множества натуральных чисел продолжается и сегодня – этого требует развитие различных наук и самой математики. Знакомство учащихся с дробными числами происходит, как правило, в начальных классах. Затем понятие дроби уточняется и расширяется в средней школе. В связи с этим учителю необходимо владеть понятием дроби и рационального числа, знать правила выполнения действий над рациональными числами, свойства этих действий. Все это нужно не только для того, чтобы математически грамотно ввести понятие дроби и обучать младших школьников выполнять с ними действия, но и, что не менее важно, видеть взаимосвязи множеств рациональных и действительных чисел с множеством натуральных чисел. Без их понимания нельзя решить проблему преемственности в обучении математике в начальных и последующих классах школы. Отметим особенность изложения материала данного параграфа, которая обусловлена как небольшим объемом курса математики для учителей начальных классов, так и его назначением: материал будет представлен во многом конспективно, часто без строгих доказательств; более подробно будет изложен материал, связанный с рациональными числами. Расширение множества N натуральных чисел будет происходить в такой последовательности: сначала строится множество Q+ положительных рациональных чисел, затем показывается, как его можно расширить до множества R+ положительных действительных чисел, и, наконец, очень кратко описывается расширение множества R+ до множества R всех действительных чисел.
Понятие дроби Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис. 128). При измерении оказалось, что отрезок х состоит из трех отрезков, равных е, и отрезка, который короче отрезка е. В этом случае длина отрезка х не может быть выражена натуральным числом. Однако если отрезок е разбить на 4 равные части, то отрезок х окажется состоящим из 14 отрезков, равных четвертой части отрезка е. И тогда, говоря о длине отрезка х, мы должны указать два числа 4 и 14: четвертая часть отрезка е укладывается в отрезке точно 14 раз. Поэтому условились длину отрезка x записывать в виде , где Е - длина единичного отрезка е, а символ называть дробью. В общем виде понятие дроби определяют так. Пусть даны отрезок х и единичный отрезок е, длина которого Е. Если отрезок х состоит из т отрезков, равных п-ой части отрезка е, то длина отрезка х может быть представлена в виде , где символ — называют дробью (и читают «эм энных»). В записи дроби числа т и п – натуральные, т называется числителем, п – знаменателем дроби. Дробь называется правильной, если ее числитель меньше знаменателя, и неправильной, если ее числитель больше знаменателя или равен ему. Вернемся к рисунку 128, где показано, что четвертая часть отрезка е уложилась в отрезке х точно 14 раз. Очевидно, это не единственный вариант выбора такой части отрезка е, которая укладывается в отрезке х целое число раз. Можно взять восьмую часть отрезка е, тогда отрезок х будет состоять из 28 таких частей и его длина будет выражаться дробью . Можно взять шестнадцатую часть отрезка е, тогда отрезок х будет состоять из 56 таких частей и его длина будет выражаться дробью . Вообще длина одного и того же отрезка х при заданном единичном отрезке е может выражаться различными дробями, причем, если длина выражена дробью , то она может быть выражена и любой дробью вида , где k - натуральное число. Теорема. Для того чтобы дроби и выражали длину одного и того же отрезка, необходимо и достаточно, чтобы выполнялось равенство тq = nр. Доказательство этой теоремы мы опускаем. Определение. Две дроби и называются равными, если т q=np. Если дроби равны, то пишут = . Например, = , так как 17×21 = 119×3 = 357, а ¹ , потому что 17×27 = 459, 19×23 = 437 и 459 ¹ 437. Из сформулированных выше теоремы и определения следует две дроби равны тогда и только тогда, когда они выражают длину одного и того же отрезка. Нам известно, что отношение равенства дробей рефлексивно, симметрично и транзитивно, т.е. является отношением эквивалентности. Теперь, используя определение равных дробей, это можно доказать. Теорема. Равенство дробей является отношением эквивалентности Доказательство. Действительно, равенство дробей рефлексивно: так как равенство mn = nm справедливо для любых натуральных чисел т и п. Равенство дробей симметрично: если = , то так как из mq = пр следует, что рп = qт (т, п, р, q Î N). Оно транзитивно: если = и = , то = . В самом деле, так как , то тq = пр, а так как = , то ps - qr. Умножив обе части равенства тq = пр на s, а равенства рs = qr на п, получим тqs = прs и прs = qrs. Откуда тqs = qrn или тs = пr. Последнее равенство означали, что . Итак, равенство дробей рефлексивно, симметрично и транзитивно, следовательно, оно является отношением эквивалентности. Из определения равных дробей вытекает основное свойство дроби. Напомним его. Не нашли, что искали? Воспользуйтесь поиском:
|