ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Элементарные задачи на построениеС помощью основных построений решаются некоторые задачи, достаточно простые и часто встречающиеся при решении других, более сложных. Такие задачи считаются элементарными и описания их решения, если они встречаются при решении более сложных, не дается. Выбор элементарных задач является условным. Задача на построение считается решенной, если указан способ построения фигуры и доказано, что в результате выполнения указанных построений действительно получается фигура с требуемыми свойствами. Рассмотрим некоторые элементарные задачи на построение. 1.Построить на данной прямой отрезок СД равный данному от Возможность такого построения вытекает из аксиомы откладывания отрезка. С помощью циркуля и линейки оно осуществляется следующим образом. Пусть даны прямая а и отрезок АВ. Отмечаем на прямой точку С и строим с центром в точке С окружность радиусом, равным отрезку АВ. Точку пересечения окружности с прямой а обозначаем D. Получаем отрезок СD, равный АВ. 2.Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу. Пусть даны угол А и полупрямая с начальной точкой О. Проведем окружность произвольного радиуса с центром в вершине А данного угла (рис. 149, а). Точки пересечения окружности со сторонами угла обозначим В и С. Радиусом АВ проведем окружность с центром в точке О (рис. 149,б). Точку пересечения этой окружности с данной полупрямой обозначим В'. Опишем окружность с центром В' и радиусом ВС. Точка С ' пересечения построенных окружностей в указанной полуплоскости лежит на стороне искомого угла. Построенный угол В'ОС' равен углу ВАС, так как это соответствующие углы равных треугольников АВС и В'ОС'. 3. Найти середину отрезка. Пусть АВ - данный отрезок. Построим две окружности одного радиуса с центрами А и В (рис. 150). Они пересекаются в точках С и С', лежащих в разных полуплоскостях относительно прямой АВ. Проведем прямую СС'. Она пересечет прямую АВ в точке О. Эта точка и есть середина отрезка АВ. Действительно, треугольники САС' и СВС' равны по трем сторонам. Отсюда следует равенство углов АСО и ОСВ. Значит, отрезок СО - биссектриса равнобедренного треугольника АСВ и, следовательно, его медиана, т.е. точка О - середина отрезка АВ. 4. Построить биссектрису данного угла. Из вершины А данного угла как из центра описываем окружность произвольного радиуса (рис. 151). Пусть В и С - точки ее пересечения со сторонами угла. Из точек В и С описываем окружности одного радиуса. Пусть D - точка их пересечения, отличная от А. Тогда полупрямая АD и есть биссектриса угла А. Докажем это. Для этого рассмотрим треугольники АВD и АСD. Они равны по трем сторонам. Отсюда следует равенство соответствующих углов DАВ и DАС т.е. луч АD делит угол ВАС пополам и, следовательно, является биссектрисой. 5. Через данную точку провести прямую, перпендикулярную данной прямой. Пусть даны точка О и прямая а. Возможны два случая: 1)точка О лежит на прямой а; 2)точка О не лежит на прямой а. В первом случае построение выполняется так же, как и в задаче 4, потому что перпендикуляр из точки О, лежащей на прямой, - это биссектриса развернутого угла (рис. 152). Во втором случае из точки О как из центра проводим окружность, пересекающую прямую а (рис. 153), а затем из точек А и В тем же радиусом проводим еще две окружности. Пусть О' - точка их пересечения, лежащая в полуплоскости, отличной от той, в которой лежит точка О. Прямая ОО' и есть перпендикуляр к данной прямой а. Докажем это. Обозначим через С точку пересечения прямых АВ и ОО'. Треугольники АОВ и АО'В равны по трем сторонам. Поэтому угол ОАС равен углу О'АС и, значит, треугольники ОАС и О'АС равны по двум сторонам и углу между ними. Отсюда их углы АСО и АСО' равны. А так как углы смежные, то они прямые. Таким образом, ОС есть перпендикуляр к прямой а. 6. Через данную точку провести прямую, параллельную данной. Пусть даны прямая а и точка А вне этой прямой (рис. 154). Возьмем на прямой а какую-нибудь точку В и соединим ее с точкой А. Через точку А проведем прямую с, образующую с АВ такой же угол, какой АВ образует с данной прямой а, но на противоположной стороне от АВ. Построенная прямая будет параллельна прямой а, что следует из равенства накрест лежащих углов, образованных при пересечении Упражнения 1. Постройте с помощью циркуля и линейки сумму и разность двух данных: а) отрезков; б) углов. 2. Разделите данный угол на 4 равных части. 3. Дан треугольник АВС. Постройте другой, равный ему, треугольник АВD. 4. Постройте окружность данного радиуса, проходящую через две данные точки.
Не нашли, что искали? Воспользуйтесь поиском:
|