Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Свойства векторного произведения




1. При перестановке сомножителей векторное произведение меняет знак, т.е. а хb =(b хa) (см. рис. 19).

Векторы ахb и b ха коллинеарны, имеют одинаковые модули (площадь параллелограмма остается неизменной), но противоположно направлены (тройки а, b, а хb и a, b, bxaпротивоположной ориентации). Стало быть axb = -(bxa).

2. Векторное произведение обладает сочетательным свойством относительно скалярного множителя, т. е. l(а хb) = (lа) х b = а х (lb).

Пусть l>0. Вектор l(ахb) перпендикулярен векторам а и b. Вектор (lа)хb также перпендикулярен векторам а и b (векторы а, lа лежат в одной плоскости). Значит, векторыl(ахb) и (lа)хb коллинеарны. Очевидно, что и направления их совпадают. Имеют одинаковую длину:

Поэтому l(a хb)= lахb. Аналогично доказывается при l<0.

3. Два ненулевых вектора а и b коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору, т. е. а||b <=>ахb =0.

В частности, i *i =j *j =k *k =0.

4. Векторное произведение обладает распределительным свойством:

(a+b) хс= ахс+b хс.

Примем без доказательства.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных