![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Линейные операции над матрицами.1. Сложение матриц. Суммой матриц А и В одинаковой размерности mXn называется матрица С той же размерности, каждый элемент которой равен сумме элементов матриц А и В, стоящих на тех же местах: Свойства сложения: 1. А + В = В + А. 2. (А + В) + С = А + (В + С). 3. Если О – нулевая матрица, то А + О = О + А = А Замечание 1. Справедливость этих свойств следует из определения операции сложения матриц. Замечание 2. Отметим еще раз, что складывать можно только матрицы одинаковой размерности. 2. Умножение матрицы на число. Произведением матрицы на число называется матрица той же размерности, что и исходная, все элементы которой равны элементам исходной матрицы, умноженным на данное число. Свойства умножения матрицы на число: 1. (km)A=k(mA). 2. k(A + B) = kA + kB. 3. (k + m)A = kA + mA. Операции над матрицами Суммой двух матриц Сложение матриц обладает следующими свойствами: 1.Коммутативность, т.е. 2.Ассоциативность, т.е. 3.Для любых двух матриц Произведением матрицы Умножение матрицы на действительное число обладает следующими свойствами: 1. 2. 3. 4. 5. 6. Матрица Свойства умножения: 1.Если матрица 2. 3.Умножение матриц не коммутативно, т.е., как правило,
Обратная матрица Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля. Матрица, обратная матрице А, обозначается через А 1 , так что В = А 1 . Обратная матрица вычисляется по формуле Вычисление обратной матрицы по формуле для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы. Ранг матрицы Рангом матрицы называется наибольший порядок ее миноров, отличных от нуля. Ранг матрицы Если все миноры порядка Если все миноры первого порядка (элементы матрицы Не нашли, что искали? Воспользуйтесь поиском:
|