ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Евклидовы пространства. Норма вектора. Ортонормированный базис. Процесс ортогонализации. Неравенство Коши-Буняковского.Евкли́дово простра́нство (также Эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность равную 3. В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов, определённых ниже. Обычно -мерное евклидово пространство обозначается , хотя часто используется не вполне приемлемое обозначение . 1. Конечномерное гильбертово пространство, то есть конечномерное вещественное векторное пространство с введённым на нём (положительно определенным) скалярным произведением, порождающим норму: , в простейшем случае (евклидова норма):
где (в евклидовом пространстве всегда можно выбрать базис, в котором верен именно этот простейший вариант). 2. Метрическое пространство, соответствующее пространству описанному выше. То есть с метрикой, введённой по формуле: , где и . 3. Вообще любое предгильбертово пространство (пространство со скалярным произведением ). Норма вектора [править | править исходный текст] Норма в векторном пространстве над полем вещественных или комплексных чисел — это функционал , обладающий следующими свойствами: 1. 2. (неравенство треугольника); 3. Эти условия являются аксиомами нормы. Не нашли, что искали? Воспользуйтесь поиском:
|