ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Самосопряженные операторы в евклидовом пространстве.Нормальный оператор в евклидовом пространстве самосопряжен в том и только в том случае, если все его собственные значения вещественны. Действительно, самосопряженный оператор в евклидовом пространстве остается самосопряженным и в комплексификации. Поэтому существует ортонормальный базис в самом евклидовом пространстве, в котором его матрица диагональна. В терминах матриц это значит, что для любой вещественной симметричной матрицы А существует ортогональная матрица С такая, что 42 диагональна. Это обстоятельство было выяснено еще в гл. V в связи с ортогональным преобразованием квадратичной формы к каноническому виду. Тесная связь между теорией самосопряженных операторов в евклидовом пространстве с теорией квадратичных форм ясно видна из того, что скалярное произведение 43 выражается через координаты вектора 44 в ортонормальном базисе в виде квадратичной формы с матрицей, равной матрице оператора М в том же базисе, и при ортогональном преобразовании координат матрица оператора и матрица квадратичной формы преобразуются одинаково:
Не нашли, что искали? Воспользуйтесь поиском:
|