Предел функции. Понятие непрерывности и свойства функций, непрерывных в точке. Точки разрыва. Замечательные пределы. Сравнение бесконечно малых.
Непрерывность функции
Рассмотрим функцию , определенную на промежутке Пусть . Функция называется непрерывной в точке , если

Функция называется непрерывной слева (справа) в точке , если . Естественно, при этом функция должна быть определена в некоторой окрестности слева (справа) то точки . Непрерывность функции в точке означает непрерывность этой функции в указанной точке как слева, так и справа.
Функция , определенная на интервале называется непрерывной на интервале , если она непрерывна в каждой точке этого интервала .
Функция , определенная на отрезке ( ) называется непрерывной на отрезке , если она непрерывна в каждой точке интервала , непрерывна справа в точке и непрерывна слева в точке .
Общие свойства непрерывных функций, заданных на отрезке , определяются четырьмя теоремами: двумя теоремами Больцано–Коши и двумя теоремами Вейерштрасса.
Теорема (первая теорема Больцано–Коши). Пусть функция определена и непрерывна на отрезке , и на концах этого промежутка принимает значения разных знаков; тогда найдется точка , в которой функция равна нулю.
Теорема (вторая теорема Больцано–Коши). Пусть функция определена и непрерывна на отрезке . Тогда, если то функция принимает все свои промежуточные значения, принадлежащие промежутку , где , , т.е. .
Теорема (первая теорема Вейерштрасса). Пусть функция определена и непрерывна на отрезке , тогда функция является ограниченной на этом отрезке.
Теорема (вторая теорема Вейерштрасса). Пусть функция определена и непрерывна на отрезке , тогда функция имеет минимум и максимум на этом отрезке (множество значений функции включает в себя точные верхнюю и нижнюю границы).
Точки разрыва
Непрерывность функции в точке , т.е. выполнение условия (3), означает, что оба односторонних предела и существуют и равны , т.е.
.
Если условие (4) не выполнено, то точку называют точкой разрыва функции . Условие (4) означает выполнение следующих четырех условий, каждое из которых предполагает выполнение всех предыдущих:
1. и существуют;
2. и конечны;
3. ;
4. .
Если 1. не выполнено, то называют точкой неопределенности.
Если 1. выполнено, а 2. не выполнено, то называют точкой бесконечного скачка.
Если выполнены 1. и 2., а 3. не выполнено, то называют точкой конечного скачка. Величина называется скачком функции в точке .
Если 1., 2., 3. выполнены, а 4. не выполнено, то называют точкой устранимого разрыва.
Если функция определена в окрестности точки и не определена в самой точке , то также называют точкой разрыва. Такие точки классифицируют по той же схеме.
Сравнение бесконечно малых величин:
· Две бесконечно малые величины и называются бесконечно малыми одного порядка, если предел их отношения есть конечное число, отличное от нуля, т.е. ;
· Величина называется бесконечно малой величиной высшего порядка по сравнению с , если предел отношения к равен нулю, т.е. ;
· Величина называется бесконечно малой величиной низшего порядка по сравнению с , если предел отношения к является бесконечно большой величиной, т.е. ;
· Две бесконечно малые величины и называются эквивалентными бесконечно малыми, если предел их отношения равен единице, т.е. .
Не нашли, что искали? Воспользуйтесь поиском:
|