![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Теорема 3.1 (без доказательства). Определитель произведения двух квадратных матриц равен произведению их определителей.Замечание. Операция перемножения матриц некоммутативна, т.е. Действительно, если существует произведение АВ, то ВА может вообще не существовать из-за несовпадения размерностей (см. предыдущий пример). Если существуют и АВ, и ВА, то они могут иметь разные размерности (если). Для квадратных матриц одного порядка произведения АВ и ВА существуют и имеют одинаковую размерность, но их соответствующие элементы в общем случае не равны. Однако в некоторых случаях произведения АВ и ВА совпадают. Рассмотрим произведение квадратной матрицы А на единичную матрицу Е того же порядка: Тот же результат получим и для произведения ЕА. Итак, для любой квадратной матрицы А АЕ = ЕА =А. Обратная матрица. Определение 3.7. Квадратная матрица А называется вырожденной, если, и невырожденной, если. Определение 3.8. Квадратная матрица В называется обратной к квадратной матрице А того же порядка, если АВ = ВА = Е. При этом В обозначается. Рассмотрим условие существования матрицы, обратной к данной, и способ ее вычисления. Теорема 3.2. Для существования обратной матрицы необходимо и достаточно, чтобы исходная матрица была невырожденной. Доказательство. 1) Необходимость: так как то (теорема 3.1), поэтому 2) Достаточность: зададим матрицу в следующем виде: . Тогда любой элемент произведения (или), не лежащий на главной диагонали, равен сумме произведений элементов одной строки (или столбца) матрицы А на алгебраические дополнения к элементам друго столбца и, следовательно, равен 0 (как определитель с двумя равными столбцами). Элементы, стоящие на главной диагонали, равны Таким образом, *=. Теорема доказана. Замечание. Сформулируем еще раз способ вычисления обратной матрицы: ее элементами являются алгебраические дополнения к элементам транспонированной матрицы А, деленные на ее определитель. Пример. Не нашли, что искали? Воспользуйтесь поиском:
|