Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Определение убывающей функции. Функция y=f(x) убывает на интервале X, если для любых и выполняется неравенство




Функция y=f(x) убывает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.

ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b), то есть при x=a и x=b, то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X.

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

 

 

31-32.определение экстремума

Функция y = f(x) называется возрастающей (убывающей) в некотором интервале, если при x1< x2 выполняется неравенство (f(x1) < f (x2) (f(x1) > f(x2)).

Если дифференцируемая функция y = f(x) на отрезке [a, b] возрастает (убывает), то ее производная на этом отрезке f '(x) > 0

(f ' (x) < 0).

Точка xо называется точкой локального максимума (минимума) функции f(x), если существует окрестность точки xо, для всех точек которой верно неравенство f(x) ≤f(xо) (f(x) ≥ f(xо)).

Точки максимума и минимума называются точками экстремума, а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума. Если точка xо является точкой экстремума функции f(x), то либо f '(xо) = 0, либо f (xо) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть xо - критическая точка. Если f ' (x) при переходе через точку xо меняет знак плюс на минус, то в точке xо функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке xо экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную
f ' (x) в окрестности точки xо и вторую производную в самой точке xо. Если f ' (xо) = 0, >0 ( <0), то точка xо является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке [a,b] функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка [a,b].

Пример 3.22. Найти экстремумы функции f(x) = 2x3 - 15x2+ 36x - 14.

Решение. Так как f '(x) = 6x2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x1 = 2 и x2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x2 = 3 производная меняет знак минус на плюс, поэтому в точке x2 = 3 у функции минимум. Вычислив значения функции в точках
x1 = 2 и x2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

33. наибольшее и наименьшее значение функции на отрезке

Если функция определена и непрерывна на отрезке , то она на этом отрезке достигает своих наибольшего и наименьшего значений. Если свое наибольшее значение функция принимает в точке , то будет локальным максимумом функции , так как в этом случае существует окрестность точки , такая, что .

Однако свое наибольшее значение функция может принимать и на концах отрезка . Поэтому, чтобы найти наибольшее значение непрерывной на отрезке функции , надо найти все максимумы функции на интервале и значения на концах отрезка , то есть и , и выбрать среди них наибольшее. Вместо исследования на максимум можно ограничиться нахождением значений функции в критических точках.

Наименьшим значением непрерывной на отрезке функции будет наименьший минимум среди всех минимумов функции на интервале и значений и .

Пример

Задание. Найти наибольшее и наименьшее значение функции на отрезке .

Решение. Находим производную функции:

Находим точки, в которых производная равна нулю:

Из полученных значений нам надо оставить лишь те, которые принадлежат заданному промежутку . Оба значения лежат в этом промежутке.

Находим значения функции в полученных стационарных точках из промежутка и на концах промежутка:

Таким образом,

Ответ.

34-35. График функции , дифференцируемой на интервале , является на этом интервале выпуклым, если график этой функции в пределах интервала лежит не выше любой своей касательной (рис. 1).

График функции , дифференцируемой на интервале , является на этом интервале вогнутым, если график этой функции в пределах интервала лежит не ниже любой своей касательной (рис. 2).






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных