Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Понятие многофункциональных критериев




Многофункциональные статистические критерии - это критерии, которые могут использоваться по отношению к самым разнообразным данным, выборкам и задачам.

Это означает, что данные могут быть представлены в любой шкале, начиная от номинативной (шкалы наименований).

Это означает также, что выборки могут быть как независимыми, так и "связанными", то есть мы можем с помощью многофункциональных критериев сравнивать и разные выборки испытуемых, и показатели одной и той же выборки, измеренные в разных условиях. Нижние границы выборок - 5 наблюдений, но возможно применение критериев и по отношению к выборкам с n=2, с некоторыми оговорками (см. разделы "Ограничения критерия φ* и "Ограничения биномиального критерия m).

Верхняя граница выборок задана только в биномиальном критерии - 50 человек. В критерии φ* Фишера верхней границы не существует - выборки могут быть сколь угодно большими.

Многофункциональные критерии позволяют решать задачи сопоставления уровней исследуемого признака, сдвигов в значениях исследуемого признака и сравнения распределений.

Ограничения критерия φ*

1. Ни одна из сопоставляемых долей не должна быть равной нулю. Формально нет препятствий для применения метода φ* в случаях, когда доля наблюдений в одной из выборок равна 0. Однако в этих случаях результат может оказаться неоправданно завышенным (Гублер Е.В., 1978, с. 86).

2. Верхний предел в критерии φ отсутствует - выборки могут быть сколь угодно большими.

Нижний предел - 2 наблюдения в одной из выборок. Однако должны соблюдаться следующие соотношения в численности двух выборок:

а) если в одной выборке всего 2 наблюдения, то во второй должно быть не менее 30:

n1 =2→ n2≥30;

б) если в одной из выборок всего 3 наблюдения, то во второй должно быть не менее 7:

n1 = 3 n2≥7;

в) если в одной из выборок всего 4 наблюдения, то во второй должно быть не менее 5:

n1 = 4 n2≥5;

г) при n1,n2≥5возможны любые сопоставления.

В принципе возможно и сопоставление выборок, не отвечающих этому условию, например, с соотношением n1,n2=15, но в этих случаях не удастся выявить достоверных различий.

Других ограничений у критерия φ* нет.

Рассмотрим несколько примеров, иллюстрирующих возможности

критерия φ*.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных