Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Пример выполнения курсового задания С 1




 

 
 

На рис. 1.49 изображена расчётная схема балки.

Дано: P = 20 кН; M = 10 кН·м; q = 2 кНм. Определить реакции внешних связей в точках А и В.

Решение.

Определение реакций внешних связей для рассматриваемой балки проводится согласно алгоритму решения задач статики, приведённому в подразделе 1.7.

1. Выбирается система отсчёта. Так как балка плоская, то выбирается система отсчёта OXY.

2. Выделяется тело, равновесие которого рассматривается. В нашем случае таким телом является балка, изображённая на рис. 1.49.

3. К балке прикладываются активные нагрузки. По условию задачи активные нагрузки известны. Так как задана распределённая нагрузка с интенсивностью q, то её приводят к сосредоточенной силе Q, модуль которой определяют по формуле Q = q×L = 2×2 = 4 кН. Эту сосредоточенную силу прикладывают к телу и показывают размер, на котором она приложена. Таким образом, на балку действуют следующие активные нагрузки: P, Q – активные силы; активная пара сил с алгебраическим моментом М.

4. Согласно аксиоме связей внешние связи, наложенные на механическую систему в точках А и В, отбрасывают и показывают реакции внешних связей X A, Y A, R B. Таким образом, на балку действуют внешние нагрузки, состоящие из активных нагрузок: P, Q, M и реакций внешних связей: X A, Y A, R B.

5. Так как система внешних сил, действующих на тело, является плоской и произвольной, то записывают три уравнения равновесия:

Σ + Σ = 0 = Q – P·cos(60о) + XA = 0; (1)

Σ + Σ = 0 = – P·sin(60о) + RB + YA = 0; (2)

Σ MA(F iE) + Σ MA(R iE) = 0 =

= M + P·sin(600)×2 – P·cos(60о)·1 – RB×4 = 0. (3)

При составлении выражений (1), (2), (3) использована первая форма уравнений равновесия. Эти уравнения решают в наиболее удобной последовательности и находят проекции неизвестных реакций на координатные оси системы отсчёта OXY или модули этих реакций.

Из уравнения (1) XA= – Q + P·cos(60о) = – 4 + 20×0,5 = 6,000 кН.

Из уравнения (3) RB = (M + P·sin(60о)×2 – P·cos(60о)×1)4 =

= (10 + 20×0,866×2 – 20×0,5×1)4 = 8,660 кН.

Из уравнения (2)

YA= – RB + P·sin(60о) = – 8,66 +20×0,866 = 8,660 кН.

 
 

Согласно условию задания необходимо произвести проверку правильности проведённых расчётов. С целью такой проверки изобразим рассматриваемую балку в упрощённом варианте (рис. 1.50).

Сила Р разложена на составляющие силы по координатным осям. Это упрощает проецирование силы Р на координатные оси системы отсчёта OXY. Необходимо отметить, что силы раскладываются на составляющие по координатным осям системы отсчёта только в точке их приложения. Порядок решения задачи остается прежним, только использована третья форма уравнений равновесия.

 

Σ MС(F iE) + Σ MС(R iE) = 0 =

= M – Q·1 – RB·2 + YA·2 – XA·1 = 0; (4)

Σ MD(F iE) + Σ MD(R iE) = 0 =

= M – Q·1 + P·sin(60о)·2 – RB·4 – XA·1 = 0; (5)

Σ MЕ(F iE) + Σ MЕ(R iE) = 0 =

= M – P·sin(600)·2 – P·cos(60о)·1 + YA·4 = 0. (6)

Подставляя найденные значения реакций X A, Y A, R B в выражения (4), (5), (6) и вычислив, получим:

 

Σ MС(F iE) + Σ MС(R iE) = 0 =

= 10 – 4·1 – 8,660·2 + 8,660·2 – 6·1 = 0; (4I)

Σ MD(F iE) + Σ MD(R iE) = 0 =

= 10 – 4·1 + 20·0,866·2 – 8,660·4 – 6·1 = 0; (5I)

Σ MЕ(F iE) + Σ MЕ(R iE) = 0 =

= 10 – 20·0,866·2 – 20·0,5·1 + 8,660·4 = 0. (6I)

 

Проведённая проверка подтвердила правильность результатов расчётов. Результаты вычислений помещают в таблицу.

Таблица

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных