Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Метод последовательных уступок




В этом методе вместо многокритериальной задачи последовательно решается несколько однокритериальных задач (по числу критериев), причем для каждого последующего критерия вводится дополнительное ограничение на величину предыдущего критерия.

1. Вначале устанавливается предпочтительность всех критериев, т.е на первое место ставится самый важный критерий.

2. Находится оптимальное решение по самому важному критерию с учетом системы ограничений (при этом остальные критерии будут рассматриваться на последующих этапах решения задачи). Это решение обращает в экстремум самый важный критерий .

3. Лицом, принимающим решение, устанавливается величина уступки . Уступка назначается исходя из практических соображений с учетом малой точности, с которой нам известны входные данные. Т.е мы согласны сделать эту уступку, чтобы максимизировать второй критерий.

4. Решается задача по следующему критерию с дополнительным ограничением.

В том случае, если на этапе 2 решалась задача на поиск максимума критерия , то дополнительное ограничение имеет следующий вид: . Уступка здесь в меньшую сторону, т.к. максимум функции уже найден.

В случае, если на этапе 2 решалась задача на поиск минимума критерия , то дополнительное ограничение имеет следующий вид: . Уступка здесь в большую сторону, т.к. найден минимум функции.

5. После нахождения оптимального решения по критерию назначается по нему уступка и решается задача по третьему критерию с двумя дополнительными ограничениями по первым двум критериям

6. Решение задачи продолжается до тех пор, пока не будет найдено значение наименее важного критерия при уступках по остальным критериям.

Метод хорош тем, что сразу видно, ценой какой уступки в одном показателе приобретается выигрыш в другом показателе и какова величина этого выигрыша.

Если лицо, принимающее решение, устраивают значения полученных критериев, то задача считается решенной. В противном случае изменяются величины уступок, и задача решается заново.

Пример. Решить задачу

 

методом последовательных уступок, если уступка по первому критерию составляет 10 % от его оптимального значения.

Решение

1. Поскольку в задаче указано, по какому критерию назначена уступка 10 %, то данный (первый) критерий считается самым важным.

2. Решаем однокритериальную задачу линейного программирования по критерию f 1:

Получим оптимальное решение = 160.

3. В соответствии с условием задачи величина уступки равна D1=0,1*160=16. Дополнительное ограничение будет иметь вид , то есть . Решим задачу

Получим оптимальное решение задачи Х *=(18, 42) и экстремумы целевых функций f 1 (X *) = 144, f 2 (X *) = 1440.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных