ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц..Матрицей размера mxn наз-ся прямоуг.таблица чисел,сост.из n-строк и m-столбцов.Эл-ты м-цы – числа,составл.м-цу. М-цы обознач.прописными(загл.)б-ми лат.алфав.,напр.:А,В,С,..,а для обознач.эл-тов м-цы исп.строч.буквы с двойной индексацией:аij,где i-номер строки, j – номер ст-ца. М-ца наз-ся невырожденной (неособенной, если |A|≠0. При |А|=0 – вырожденная (особенная) м-ца. Виды м-цы: м-ца(вектор)столбец – м-ца,сост.из одного столбца; м-ца(вектор)строка – м-ца,сост.из одной строки; квадр.м-ца n-го порядка – м-ца,ч-ло стр.которой=ч-лу ст-в и =n.; диагонал. – все недиагонал.эл-ты квадр.м-цы равны 0.; единич. (обознач.Е) – все диагонал.эл-ты диагонал.м-цы =1; нулевая – м-ца,любого размера, если все её эл-ты равны 0. Трансп.м-цы – это смена местами строк и ст-в с сох-м порядка следования эл-тов. А – исходная, А’(Ат)-транспонир. Если А м-ца имеет размер mxn, то А’ м-ца – nxm. Равенство м-ц:две м-цы одинак.размера наз.равными,если они равны поэлементно. Сложение м-ц: (одинак.размера)Складываем соотв.эл-ты. Умножение на число: все эл-ты м-цы умнож.на это число. (Общ.множитель всех эл-тов выносится за знак.м-цы). Умножение 2-х м-ц: произведение м-цы Аmxn на м-цу Вnxp наз-ся м-ца Сmxp,каждый эл-т которой равен сумме произведений эл-в i-строки на соотв.эл. j – столбца. Перемножать можно только такие м-цы,когда число столбцов 1-ой м-цы равно числу строк 2-й м-цы. Произведение м-ц не коммуникативно. 2х3 3х7 не = 3х7 2х3,т.к. 7 не = 2. Возвед.квадр.м-цы в степень. (только квадр.) Аm = А* А*..А. m раз Не нашли, что искали? Воспользуйтесь поиском:
|