Квадратная матрица и ее определитель. Особенная и неособенная квадратные матрицы. Присоединенная матрица. Матрица, обратная данной, и алгоритм ее вычисления.
Определители квадр.м-ц:
Опред.1-го порядка (м-цы 1-го порядка) наз-ся эл-т этой м-цы а11. Е=(1),|E| = detE=1
A=(0),|A|=0.
Опред.2пор.наз-ся ч-ло,кот.считается след.образом |A|=a11*a22 – a12*a21.
Опред.3пор.наз-ся ч-ло,кот.наход.по ф-ле (когда вычёркивают по пересечению..)
Св-ва опред-й: 1) При трансп.опред-ль м-цы не меняется.
2) Если в м-це есть нулевая строка или нулевой столбец,то опред-ль такой м-цы =0.
3) Если в м-це поменять местами 2 ст-ки или ст-ца с сохр-м порядка след.эл-тов,то опред-ль поменяет знак на противопол.
4) Если в м-це есть 2 одинак.строки или столбца,то опред-ль такой м-цы =0.
5) Общ.множ-ль эл-тов какой-либо ст-ки или ст-ца можно вынести за зн.опред-ля.
6) Если к эл-там какой-либо стр.или ст-ца прибавить эл-т др.ст-ки или ст-ца,умноженные на любое число,то опред-ль не изм.
Опред.квадр.м-цы равен сумме произведений эл-тов какой-либо ст-ки или ст-ца на их алгебраич.дополнения.
^3 = a11*A11 + a12*A12 + a13*A13 (^3 = a11 *M11 – a12 *M12 + a13 *M13)
М-ца наз-ся невырожденной (неособенной, если |A|не=0. При |А|=0 – вырожденная (особенная) м-ца.
Присоедин.м-ца. А~ присоединённая для м-цы А,если она сост.из алгебраич.дополнений к эл-там транспонир.м-цы. Замеч.:чтобы быстро найти присоедин.м-цу для квадр.м-цы 2-го порядка надо поменять местами эл-ты на гл.диагонали, а перед другими двумя Эл-ми поменять знак на противоп.
Обратная м-ца. А-1 наз-ся обратной для м-цы А, если произведение этих м-ц в любом порядке есть Единичное. А*А-1=А-1*А=Е Замечание:если опред-ль м-цы А не равен 0,то такая м-ца наз-ся невырожденной (неособенной).
ТЕОР.для того, чтобы квадр.м-ца А имела обратную,необх.и достат., чтобы она была невырожденной. А-1 нах-ся о формуле: А-1=1/|А| * А~ (сначала находим опред-ль (|A|), затем присоед.м-цу (А~), потом по ф-ле находим обр.м-цу А-1
Не нашли, что искали? Воспользуйтесь поиском:
|