ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Геометрический смысл полной производной по времени функции Ляпунова, вычисленной в силу приведенной системы
Пусть (для определенности) дана положительно определенная функция Ляпунова . Знание ее производной в силу системы (1.6.1) позволяет наглядно выяснить характер движения изображающей точки вдоль интегральной кривой (решения) системы. Действительно, пусть в некоторый фиксированный момент времени изображающая точка М занимает некоторое положение на кривой (решении) системы (1.6.1). Построим поверхность (с – положительное число), проходящую через точку М. Затем по формуле (1.6.4) вычислим полную производную функции V в этой точке. Так как , и будет равна скалярному произведению вектор-функций (1.7.1) причем напомним, что вектор-функция f определяет вектор скорости движения изображающей точки вдоль решения системы. Рассмотрим три возможных случая.
1. Пусть в данном положении точки М производная отрицательна т.е. функция V убывает на решении системы (см. рисунок 6,а). Известно, что вектор направлен по нормали к поверхности в точке М в сторону возрастания функции V, т.е.во внешнюю часть поверхности V=с, если функция Ляпунова V положительно определенная (и внутрь поверхности , если V отрицательно определенная), а вектор-функция f скорости движения точки М касателен к кривой решения в точке М. Таким образом, отрицательность - скалярного произведения (1.7.1) векторов означает, что угол между ними тупой, и так как вектор направлен по внешней нормали к поверхности в точке М, то вектор скорости f точки М направлен внутрь этой поверхности. А это означает, что траектория изображающей точки М (интегральная кривая, решение системы) пересекает поверхность снаружи вовнутрь (см. рисунок 6,а). 2. Пусть в данном положении точки М , т.е. функция V возрастает на решении системы (см. рисунок 6,б). Положительность - скалярного произведения (1.7.1) векторов означает, что угол между ними острый, и, следовательно, траектория изображающей точки М пересекает поверхность изнутри наружу (см. рисунок 6,б). 3. Пусть в данном положении точки М производная , т.е. скалярное произведение векторов равно нулю, угол между этими векторами - прямой, и следовательно, траектория изображающей точки М касается поверхности (в частности, она может целиком лежать на этой поверхности). Замечание. Главный идейный смысл второго, или, как его еще называют, прямого метода Ляпунова, состоит в том, что свойства устойчивости тривиального решения приведенной по Ляпунову системы, или, что то же, системы возмущенного движения, изучаются по поведению полной производной по времени функции Ляпунова, вычисленной в силу системы (говорят, вдоль решений системы уравнений возмущенного движения), причем сами решения остаются неизвестными, а их производные заменяются известными правыми частями , т.е. второй метод Ляпунова является косвенным методом исследования свойств устойчивости решений приведенной системы. ■ Не нашли, что искали? Воспользуйтесь поиском:
|