Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






САР электромашинного регулирования по угловой скорости генератора (тахометрическая схема). 4 страница




Тяжелые условия работы аккумуляторной батареи заставляют выбирать ее не по емкости, большая величина которой не требуется и по пуску (при пуске расходуется 2—5 А∙ч), ни по вспомогательным нагрузкам, а по допустимому толчку тока. На тепловозах устанавливаются кислотные или щелочные аккумуляторные батареи и с напряжением 60…64 в и емкостью 450 А∙ч.

Пуск газотурбинной установки. Пуск газотурбинной установки требует большей мощности и является более продолжительным, чем пуск дизеля. Момент сопротивления компрессора составляет значительную часть крутящего момента турбины, а скорость, до которой не обходимо довести вал ГТУ в процессе пуска, значительно выше, чем у дизеля. Высокие ускорения в процессе пуска опасны для лопаток, и в схемах пуска предусматриваются устройства ограничивающие ускорение. Мощность пусковых двигателей составляет 3…7% номинальной мощности, причем бόльшие значения соответствуют ГТУ со свободной тяговой турбиной.

Аккумуляторные батареи непосредственно для пуска ГТУ используются редко, так как они получаются при этом чрезмерно громоздкими. Чаще применяют дизель или турбину небольшой мощности, используемые также для привода вспомогательных машин.

В газотурбовозах с электрической передачей в качестве пускового двигателя применяется тяговый генератор, если он приводится от турбокомпрессора, или его возбудитель, который в этом случае должен быть рассчитан также и на режим пуска ГТУ. Питание генератора G1 (или возбудителя) (рис. 10.3) осуществляется от вспомогательного дизель-генератора ВДВС. Так же, как для пуска дизеля, у генератора (возбудителя) предусматривается последовательная пусковая обмотка LG1, которая включается в цепь пуска ГТУ при замыкании контакторов К1 и К2.

Для облегчения условий пуска вначале подается в камеры сгорания более легко воспламеняющееся топливо (газойль, дизельное топливо), которое после начального разгона, создания устойчивого факела пламени и достаточного давления в камерах сгорания автоматически заменяется рабочим тяжелым топливом (мазут, дистилляты и т. п.). Нередко вспомогательный дизель-генератор используется также для маневровых перемещений газотурбовоза на станциях и в депо при остановленной ГТУ.


В большинстве видов теплоэлектрического подвижного состава для управления движением поезда в тяговом режиме используется в основном изменение настройки регулятора теплового двигателя. Для этой цели применяются различные дистанционные приводы, которые при перемещении машинистом органа управления изменяют длину пружины измерительного органа регулятора. В результате изменяется угловая скорость теплового двигателя, поддерживаемая регулятором, и мощность двигателя. Если управление теплоэлектрическим подвижным составом по системе многих единиц не предусмотрено, применяют механические (посредством тяг и рычагов) и гидравлические приводы. Чаще используют электропневматические, электрогидравлические или электродвигательные приводы, допускающие управление с одного поста любым количеством приводов. Такие же приводы применяют при двухрежимных регуляторах теплового двигателя для изменения положения регулирующего органа последнего.

Наиболее распространено ступенчатое управление, когда рукоятка контроллера имеёт несколько фиксированных положений, которым соответствуют определенные положения исполнительного механизма привода управления регулятором и, следовательно, определенные величины угловой скорости (или подачи топлива).

На рис. 10.4 показана упрощенная кинематическая схема электропневматического привода управления регулятором дизеля на 16 положений, применяемого на тепловозах ТЭЗ и ТЭ7. Сжатие пружины 13 регулятора дизеля определяется положением зубчатой рейки 12, в свою очередь зависящего от положения зубчатого сек тора 11. В корпусе 7 привода управления имеются четыре цилиндра 1…4 с поршнями 5 и пружинами 6. Впуском и выпуском сжатого воздуха под поршнями цилиндров управляют электропневматические вентили ВТ включающего типа. При отключенной катушке вентиля соответствующий цилиндр соединен с атмосферой, а поршень находится в нижнем положении. После включения катушки в цилиндр впускается сжатый воздух, и поршень поднимается вверх до упора.

Когда все катушки вентилей отключены, привод занимает положение, соответствующее минимальному натяжению пружины и минимальной угловой скорости коленчатого вала дизеля. Последовательность включения катушек вентилей при повороте рукоятки контроллера машиниста с положения 1 до положения 16 изображена на схеме (см. рис. 10.4).

В положении 1 катушки остаются выключенными и сохраняется минимальная угловая скорость. В положении 2 включается вентиль ВТ1, поршень 1 цилиндра перемещается и, нажимая на ролик, поднимает левое плечо рычага. В результате этого по часовой стрелке поворачивается система рычагов, а зубчатый сектор опускает зубчатую рейку, увеличивая натяжение пружины.

В положении 3 ВТ1 выключается и включается ВТ2. Поршень 1 опускается, а поршень 2 поднимается. Плечи рычагов подобраны так, что рычаг 8 поворачивается на больший угол, чем в положении 2, что приводит к дальнейшему повороту зубчатого сектора и увеличению натяжения пружины. Включение вентилей чередуется таким образом, что зубчатая рейка постепенно опускается от положения к положению и в положении 16, когда все вентили включены, натяжение – наибольшее. Муфта 10 служит для настройки пружины регулятора при заданном положении привода. Пружина 9 стремится вернуть зубчатый сектор 11 в исходное положение при отключении вентилей.

На тепловозах ТЭ1, ТЭ2 и других применен аналогичный привод с тремя цилиндрами и вентилями. Из схемы (см. рис. 10.4) видно, что при исключении вентиля ВТ4 привод обеспечивает при сохранении последовательности включений вентилей ВТ1…ВТ3 восемь рабочих положений.

Этот привод прост и надежен в работе, но имеет тот недостаток, что натяжение пружины при переходе с одного положения на другое изменяется слишком быстро. В результате резко изменяются подача топлива и угловая скорость.

В тепловозах ТЭ1О, ТЭП6О, ТЭ10Л и других применён электрогидравлический привод, действующий плавно и достаточно медленно (рис. 10.5). Натяжение пружины регулятора изменяется путем перемещения поршня 10 под давлением масла, впускаемого золотниковым плунжером 3. Между золотником (плунжером) 3 и поршнем 10 имеется жесткая обратная связь (рычаги 5…9).

Управление приводом осуществляется включением четырех электромагнитов МР1…МР4, на сердечники которых опирается треугольная пластина 6, прижимаемая снизу рычагом 5. Перемещения сердечников электромагнитов вверх и вниз ограничены упорами, не показанными на схеме. При выключенных катушках электромагнитов (положение 1 рукоятки контроллера) сердечники и треугольная пластина занимают верхнее положение, которое соответствует верхнему положению поршня 10 и, следовательно, минимальной угловой скорости коленчатого вала дизеля.

В положении 2 одновременно включаются электромагниты МР1 и МР4. Сердечник электромагнита МР1 опускается, вследствие чего треугольная пластина поворачивается, и, нажимая на рычаг 5, перемещает золотник 3 вниз. Сердечник электромагнита МР4 также опускается и перемещает вниз золотниковую втулку 2, но на меньшую высоту, чем золотник 3. Поэтому открывается доступ масла из трубопровода через игольчатый клапан 4 и отверстие во втулке 2 в пространство над поршнем 10. Поршень перемещается вниз, увеличивая силу сжатия пружины. Игольчатый клапан служит для замедления перемещения поршня. Втулка 2 через шестерню 1 приводится во вращение от вала дизеля. Вследствие этого масло пропускается к поршню только, когда отверстия втулки находятся против отверстий в корпусе, что также замедляет перемещение поршня. Вращение втулки, кроме того, снижает нечувствительность привода, так как уменьшает влияние трения между втулкой, корпусом и золотником.

При перемещении поршня 10 вниз рычаги 8 и 5 поворачиваются по часовой стрелке и золотник 3 поднимается. Когда он закрывает отверстие втулки, поршень 10 останавливается. Величина перемещения поршня при заданном положении втулки 2 за висит от плеч рычагов и расстояний между опорой треугольной пластины и точками соприкосновения торцов сердечников электромагнитов с пластиной.

На положении 3 рукоятки контроллера катушка электромагнита МР4 обесточивается, его сердечник, а следовательно, и втулка 2 поднимаются. Вследствие этого вновь открывается доступ масла пространство над поршнем 10 и при неподвижной треугольной пластине он перемещается вниз, пока золотник 3 не закроет проходного отверстия.

На следующих фиксированных позициях катушки электромагнитов МРI…МР4 включаются и выключаются в различных сочетаниях. Расстояния сердечников электромагнитов от опоры треугольной пластины подобраны так, что при переводе рукоятки контроллера на последующие положения вплоть до 15, поршень 10 постепенно перемещается вниз, увеличивая натяжение пружины.

В положении 15 угловая скорость дизеля достигает номинального значения.

Этот привод по конструкции несколько сложнее электропневматического, но режим работы дизеля изменяется более плавно. Для различных дизелей можно изменять скорость перемещения поршня 10 посредством игольчатого клапана 4. Привод обеспечивает плавное изменение режима работы дизеля даже в том случае, если машинист сразу переставит рукоятку контроллера на одно из последних положений.

 

Выше рассматривались системы объединенного регулирования мощности, в которых регуляторы управляют также ступенчатым ослаблением поля тяговых электродвигателей. Более часто управление ослаблением поля и переключением группировок тяговых двигателей осуществляется независимо от объединенного регулирования: в зависимости от напряжения и тока генератора либо от скорости движения.

В качестве примера рассмотрим схему управления по режиму генератора. На тепловозах ТЭ3, ТЭ10, ТЭП60 и других для двухступенчатого ослабления поля двигателей используются двухкатушечные реле ослабления поля РП1 и РП2 (рис. 10.6), которые управляют индивидуальными или групповыми контакторами. Реле РП1 и РП2 одинаковы. Реле имеет катушку напряжения Н, которая последовательно с добавочными сопротивлениями включена на напряжение тягового генератора G, и токовую катушку Т, присоединенную вместе с добавочными сопротивлениями параллельно обмотке дополнительных полюсов ДП генератора.

Катушки размещены на сердечниках СН и СТ, (рис. 10.7), расположенных по обе стороны опоры поворотного якоря Я. Силы пружины и катушки Т под током действуют в направлении размыкания контактов, сила притяжения, создаваемая катушкой Н, в направлении замыкания их. Срабатывание реле происходит, когда момент силы катушки Н при наличии воздушного зазора оказывается больше, чем сумма моментов. сил пружины и катушки т. е. при увеличении тока в катушке Т для срабатывания реле требуется больший ток в катушке Н. По опытным данным ток срабатывания приблизительно равен

,

где RНср – эквивалентное сопротивление цепи катушки Н; iНср – ток срабатывания при отсутствии тока в катушке Т; кТ – коэффициент, зависящий от сопротивлений обмотки ДП и катушки Т и от количества витков последней.

Характеристика срабатывания реле в координатах напряжения Uг ср и тока Iг ср генератора может быть выражена равенством (рис. 10.8)

Uг ср= RНср iН0 + кТ RНср Iг ср.

Так как после срабатывания реле воздушный зазор между якорем и сердечником СН уменьшается, сила катушки Н возрастает, а сила катушки Т вследствие увеличения зазора между ее сердечником и якорем уменьшается. Для отпадания реле необходимо снижение тока в катушке Н. Так как токовая катушка стремится притянуть якорь, то при увеличении тока в ней отпадание совершается при большом токе в катушке Н, т. е. при более высоком напряжении. Следовательно, характеристика отпадания реле может быть представлена равенством

Uг от= RНот i′Н0 + кТ RНот Iг от.

Характеристики срабатывания А1В1 и отпадания С1D1 реле РП1 настраиваются с помощью добавочных сопротивлений в цепи катушек Н на более низкое напряжение, чем характеристики А2В2 и С2D2 реле РП2. Поэтому при увеличении скорости движения поезда, когда напряжение генератора достигает значений, соответствующих линии контакты реле РП1 замыкают цепь катушки группового (или индивидуальных) контактора Ш1. Обмотки двигателей (на рис. 10.7 для простоты показана цепь только одного двигателя) шунтируются сопротивлениями. Ток в цепи якорей увеличивается, а в обмотках возбуждения уменьшается. Вследствие увеличения тока генератора система регулирования мощности уменьшает его напряжение. Так как постоянная времени возбуждения много больше постоянной времени силовой цепи, начальный ток после шунтирования обмоток возрастает до величины больше тока установившегося режима и снижается до него по мере падения напряжения. При дальнейшем увеличении скорости движения напряжение вновь возрастает и на линии А2В2 (см. рис. 10.8) совершается аналогичный переход на вторую ступень ослабления поля.

Если скорость поезда снижается (например, при движении по подъему), ток генератора увеличивается. На линии С2D2 отпадает реле РП2 и переводит двигатели со второй ступени ослабления на первую. При этом ток цепи якоря снижается, а напряжение генератора увеличивается, но опять с отставанием по времени от тока.

Разница между минимальным и установившимся током здесь относительно больше, чем при ослаблении поля, так как постоянная времени возбуждения генератора при высоком напряжении, меньше вследствие насыщения его магнитной цепи. Поэтому смягчающее влияние изменения напряжения сказывается при переходе на ослабленное поле сильнее, чем при обратном переходе. При дальнейшем снижении скорости и увеличении тока до С2D2 (см. рис. 10.8) таким же образом отпадает реле РП2.


Защита от буксования колес. Одной из главных задач усовершенствования локомотивов заключается в увеличении их удельной мощности, т. е. отношения номинальной мощности теплового двигателя к весу локомотива. При этом, как правило, увеличивается коэффициент тяги при номинальном (длительном) режиме (отношение длительной силы тяги к сцепному весу) и номинальная (длительная) скорость движения. В тепловозе ТЭ2 номинальный коэффициент тяги равен 0,128, в тепловозе ТЭ3 – 0,16, в тепловозах ТЭ10 и ТЭ40 – 0,2…0,206. Предельная сила тяги по сцеплению колёс с рельсами в номинальном режиме уменьшается вследствие увеличения скорости движения. Поэтому практически реализуемые силы тяги современных локомотивов становятся все более близкими к предельным силам тяги по сцеплению, что вызывает более частое и интенсивное буксование колес.

Как известно, при буксовании колесной пары возможно резкое увеличение скорости ее вращения, что представляет опасность для тягового двигателя, соединенного с буксующей колесной парой, приводит к снижению силы тяги локомотива, вызывает повышенный износ бандажей колес и т. п. Поэтому при создании новых локомотивов предусматривают меры по повышению коэффициента использования сцепного веса: конструктивные решения по снижению разности статических и динамических давлений отдельных колесных пар на рельс, применение электрических схем, обеспечивающих лучшее использование сцепного веса, и т. д. Вместе с тем ведутся работы по совершенствованию систем защиты от буксования.

Задача системы защиты от буксования заключается в том, чтобы при возникновении буксования одной или нескольких колесных пар уменьшить момент, передаваемый на них, до величины, при которой скольжение их относительно рельсов прекращается и восстанавливается нормальное сцепление. При этом сила тяги локомотива должна снижаться на возможно меньшую величину в течение минимального промежутка времени и повышаться после прекращения действия защиты только после восстановления нормального сцепления.

Следует отметить, что реализация сил сцепления связана с некоторым скольжением колес относительно рельсов. Кроме того, скольжение неизбежно вследствие разницы в диаметрах бандажей отдельных колес, конической формы бандажей и продольных колебаний локомотива при движении. Скольжение колес при отсутствии бок сования составляет 1…1,5% скорости движения, и оно не должно приводить в действие защиту.

В любой схеме защиты от буксования можно выделить узел обнаружения буксования и узел прекращения его. Первый должен тем или иным способом измерять скорость или ускорение колесных пар и при ненормальном превышении их посылать сигнал в узел прекращения буксования. Последний, получив сигнал, должен действовать в направлении уменьшения момента тяговых двигателей, и после прекращения сигнала восстановить начальную величину момента. Узел обнаружения должен иметь достаточно высокую чувствительность в целях повышения быстродействия системы.

Наиболее распространенной схемой защиты от буксования на тепловозах является схема с реле буксования, реагирующим на разность токов или напряжений тяговых двигателей. При параллельном соединении тяговых электродвигателей к реле буксования К (рис. 10.9 а) включается между отрицательными зажимами якорей каждой пары двигателей. При отсутствии буксования в катушке реле протекает незначительный ток, зависящий от неравенства сопротивлений обмоток возбуждения, расхождения скоростных характеристик двигателей или разности диаметров бандажей колес. Если колёсная пара, которая соединена, например, с валом двигателя М1, начинает буксовать, скорость ее быстро возрастает и ток двигателя М2 уменьшается. Ток в катушке РБ

,

где Rвэ1, Rвэ2 – эквивалентные сопротивления обмоток возбуждения и шунтирующих сопротивлений;

I1, I2 токи двигателей M1 и M 2; Rб – сопротивление катушки реле.

При некотором токе реле включается, одна пара его контактов (рис. 10,9 в) отключает катушку контактора К3, другая – включает звуковой сигнал Z, а блок-контакты К3 включают сигнальную лампу Н.

Вследствие снижения напряжения возбудителя и генератора ток генератора и сила тяги обоих электродвигателей уменьшаются, пока не восстановится сцепление буксующей колесной пары с рельсами. В результате этого ток электродвигателя M1 станет приблизительно равным току электродвигателя M 2 и реле отпадает, вновь включив контактор К3 и отключив сигналы. Если условия для буксования сохранились, оно вновь возобновится, и описанный процесс будет повторяться, пока не изменятся условия сцепления или машинист не прекратит буксования подачей песка или снижением мощности дизеля и тока генератора.

На рис. 10.9 6 изображена схема включения катушки реле буксования при последовательном соединении электродвигателей. Параллельно с цепью двигателей включены сопротивления R1 и R2 подобранные так, чтобы при нормальной работе двигателей потенциалы точек а и б были одинаковы (при двух последовательно соединенных двигателях ветви R1 и R2 одинаковы). Между точками а и б включена катушка реле буксования К. При возникновении буксования одной из движущих осей напряжение на двигателях перераспределяется, потенциал точки а изменяется. Под действием возникшей разности потенциалов через катушку реле протекает ток и реле К срабатывает.

Дальше процесс протекает, как и в предыдущем случае. После прекращения буксования восстанавливается приблизительно одинаковое распределение напряжения между двигателями и реле буксования отпадает.

Оба рассмотренных варианта весьма просты, но обладают существенными недостатками. Главным из них является низкая чувствительность защиты. В качестве сигнала о буксовании используется разность токов или напряжений двигателей, которая может быть значительной и при отсутствии буксования. При варианте схемы (см. рис. 10.9 6) напряжения двигателей могут быть различны из-за неравенства их угловых скоростей вследствие различия диаметров бандажей колес, расхождения характеристик тяговых двигателей, неравенства сопротивлений R1 и R2 по причине производственных допусков.

При ослаблении поля тяговых двигателей разность напряжений увеличивается вследствие неравенства сопротивлений обмоток возбуждения, шунтирующих сопротивлений и проводов, соединяющих сопротивления с двигателями и контакторами ослабления поля.

Обе схемы защиты не действуют, если одновременно буксуют две колесные пары, к двигателям которых присоединено реле буксования, или все колёсные пары, что нередко наблюдается в эксплуатации.

Более надёжными являются схемы с индукторными тахогенераторами, встраиваемыми в буксовые узлы, и электронными узлами обработки сигналов.

Защита от заземления силовой цепи. Соединение токоведущих частей силовой цепи с корпусом тепловоза может быть результатом пробоя изоляции от атмосферных или коммутационных перенапряжений, от случайного соприкосновения контактов или выводных зажимов с металлическими частями, от повреждения изоляции и т. п.

Если силовая цепь не соединена с корпусом при монтаже, то случайное заземление не нарушает работу силовой цепи и не обнаруживается. Однако при этом потенциалы в некоторых узлах сило вой цепи по отношению к земле могут оказаться выше тех, на которые они рассчитаны, и повышается опасность их замыкания на землю. При отсутствии защиты второе заземление вызовет тяжелые повреждения электрооборудования.

Поэтому в тепловозах предусматривается включение реле заземления К, катушка которого вместе с добавочным сопротивлением присоединена между отрицательным полюсом силовой цепи и корпусом (рис. 10.10 а). При случайном заземлении цепи на стороне положительного полюса ток от генератора протекает через место заземления, корпус, катушку К и сопротивление к отрицательному полюсу. Реле срабатывает и отключает контактор К3 (рис. 10.10 б), вследствие чего снимается возбуждение с генератора и возбудителя. Для того чтобы реле после этого не включило вновь контакторы, в нем предусмотрена механическая защелка К (см. рис. 10.10 б), удерживающая контакты в разомкнутом) положении.

Для устранения неисправности машинист освобождает защелку и производит пуск тепловоза. Если в пути не удается устранить заземление, защелку освобождают, но цепь катушки реле заземления раз мыкают выключателем ВРЗ, чтобы избежать повторного срабатывания после пуска тепловоза. движение со случайным заземлением и разомкнутой цепью защиты считается аварийным и допускается до ближайшего пункта, где может быть произведен ремонт или смена тепловоза.

При возникновении электрической дуги на коллекторе генератора или электродвигателях, как правило, происходит переброс дуги на корпус машины и реле заземления срабатывает. Таким образом, реле практически служит защитой и от переброса дуги по коллектору.

В случае повреждения электродвигателя, препятствующего его работе, размыкается соответствующий отключатель ОМ1 или ОМ2 (при шести параллельно соединенных электродвигателях имеется 6 отключателей). При этом размыкается цепь катушки силового контактора (К1, К2,...) электродвигателя и уменьшается мощность генератора путем введения ступени сопротивления в цепь возбуждения возбудителя или задающей обмотки магнитного усилителя в цепи возбуждения главным образом для того, чтобы при одновременной работе двух секций выровнять распределение тока между их электродвигателями. Нормально разомкнутые контакты ОМ шунтируют блок-контакты соответствующего контактора Кi в цепи катушек К, чтобы обеспечить возможность включения контакторов К при отключенном двигателе. Режим движения тепловоза при отключении одного электродвигателя также является аварийным, так как остальные электродвигатели перегружаются по току.

Защита тепловых двигателей от превышения допустимой угловой скорости. В дизелях и газотурбинных установках максимальную угловую скорость ограничивают регуляторы. Однако, если они вы полнены с гидравлическим или другим приводом, время движения которого относительно велико, при внезапной разгрузке угловая скорость в переходном процессе может достигать опасных значений. Поэтому часто используются для защиты более простые и быстро действующие дополнительные регуляторы прямого действия, называемые предельными регуляторами, или регуляторами безопасности. Предельные регуляторы дизелей при достижении угловой скорости, на которую они настроены, как правило, действуют на механизм быстрого выключения подачи топлива, вследствие чего дизель останавливается. для того чтобы избежать частой остановки дизеля при случайных повышениях угловой скорости, не опасных для него, предельный регулятор настраивают на скорость, превышающую на 10—15% максимальную рабочую скорость дизеля.

Защита от падения давления смазочного масла. Коленчатый вал дизеля представляет сложную дорогостоящую деталь, обрабатываемую с высокой точностью и работающую при резко переменной нагрузке. Выемка поврежденного вала связана с практически полной разборкой дизеля. Поэтому очень важно, чтобы трущиеся поверхности вала имели надежную смазку. для дизелей применяются специальные дизельные масла высокого качества. для обеспечения требуемого слоя смазки между трущимися поверхностями необходима определенная вязкость масла и подача его под определенным давлением. При повышении температуры масла вследствие повышения температуры окружающей среды или увеличения потерь на трение вязкость масла и давление в маслопроводе падают. давление масла может снизиться и по другим причинам. для защиты дизеля от снижения давления масла в маслопроводе на выходе из дизеля установлено реле давления масла.

 

В корпусе 1 реле (рис. 10.11) укреплена упругая трубка (сильфон) 2, к днищу которой прикреплен стержень З, шарнирно соединенный с рычагом 8. На стержень надета пружина 4, на опору которой опирается конец коленчатого рычага 9. Масло подводится в корпус через нижнее отверстие. При нормальном давлении его сильфон сжимается и стержень, поднимаясь, замыкает подвижный контакт 7 с неподвижным контактом 6. При снижении давления до некоторой величины сила пружины 4 становится больше силы давления масла на днище сильфона, стержень опускается и размыкает контакты. Для быстрого размыкания контактов установлен постоянный магнит 5, который удерживает рычаг 8 в притянутом положении, пока не создастся достаточная избыточная сила пружины, после чего рычаг отрывается и сила притяжения резко падает. Давление, при котором контакты размыкаются, можно регулировать изменением положения рычага 9 при помощи регулировочного винта 10.

Контакты реле давления масла обычно включаются в цепь катушки блокировочного электромагнита БМ. Электромагнит БМ соединен с золотником 3 выключения регулятора (рис. 10.12) на гидравлическом сервомоторе СМ регулятора.

При нормальной работе регулятора катушка электромагнита включена, золотник 3 опущен и сила сжатия пружины уравновешена силой давления масла под поршнем П. При выключении катушки золотник поднимается, открывается отверстие, соединяющее пространства над и под поршнем П, и пружина опускает его, прекращая подачу топлива.

В некоторых тепловозах минимальное давление масла, необходимое для нормальной работы дизеля при больших угловых скоростях, не удается получить при малых скоростях дизеля. В таком случае применяют два реле давления масла: одно настраивают на отключение при давлении 0,5…0,6 атм и оно действует, как описано выше; контакты второго реле включены в цепь катушки контактора возбуждения и при малых угловых скоростях дизеля они шунтированы контактами какого-либо реле управления. При больших скоростях они разомкнуты и, если давление масла становится меньше 1…1,2 атм, возбуждение генератора выключается, т.е. с дизеля снимается нагрузка, но он не останавливается.

Защита от превышения температуры и снижения давления охлаждающей воды. Температура охлаждающей воды дизеля не должна быть слишком близкой к температуре парообразования, так как это может нарушить ее циркуляцию и привести к аварийному повышению температуры деталей дизеля. Поэтому часто в системе охлаждения устанавливают термореле, контакты которых обычно включают в цепь катушки контактора цепи возбуждения, так что при превышении допустимой температуры воды нагрузка с дизеля снимается. Подобным же образом устанавливают реле давления воды и включают их контакты. При снижении давления воды, что может быть результатом повреждения трубопроводов, кранов, остановки водяного насоса и т. п., контакты реле давления выключают возбуждение генератора.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных