ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Распределение Гаусса
Мы будем пользоваться только распределением Гаусса [1, с. 26], представленным на рисунке 8.1.1 кривой 4
Эта формула распределения вполне приемлема и позволяет легко провести вычисления. Кроме того, оценки ошибок в большинстве случаев оказываются довольно грубыми, и эта неопределенность в их оценке полностью перекрывает ошибки, которые обусловлены произволом выбора в качестве функции распределения формулы (8.2.1). Правда, сказанное выше выполняется не всегда. Например, если результаты измерений дискретны и соответствуют ближайшим делениям шкалы прибора, пользоваться гауссовым распределением нельзя. Перечислим основные свойства распределения Гаусса: · Функция f(x) зеркально симметрична относительно истинного значения X измеряемой величины x. · Площадь под кривой f(x) пропорциональна общему числу измерений. Коэффициент пропорциональности принято выбирать так, чтобы эта площадь равнялась 1; тогда
· Точки перегиба кривой (8.2.1) удалены от X на ± σ. При этом доля результатов всех измерений, попадающая в интервал (- σ, + σ), составляет 68.3 %. В интервале (- 2 σ, + 2 σ) находится уже 95.4 % всех результатов. В теории вероятности σ называется средним квадратичным отклонением, а σ2 – дисперсией, характеризующей разброс случайной величины (dispersio - рассеяние). · Функция f(x) называется плотностью распределения и равна числу отсчетов, приходящихся на единичный интервал, так что f(x)dx равно числу попаданий измеряемой величины X в интервал от x до x + dx. Метод Стьюдента
Наша задача состоит в том, чтобы, не выполняя большого числа измерений, найти среднее значение < x >, близкое к истинному значению X измеряемой величины, и погрешность измерений - полуширину доверительного интервала D x, близкую к 2σ, как того требуют Государственные стандарты [2, 3]. Это делается по формулам Стьюдента (У. Госсет, Англия, 1908; Student – его псевдоним). Рекомендуется в качестве истинного значения X брать < x >, вычисляемое по формуле (5.2.1), а случайную ошибку оценивать по формуле
где n – число измерений. Коэффициенты Стьюдента tp,n зависят от значения надежности p и числа измерений n. Величины этих коэффициентов для заданного p = 0.95 [2, 3] и различных n находят по таблице 1.1.1.
Проиллюстрируем эффективность методики Стьюдента при определении среднего значения и доверительного интервала по данным небольшого количества измерений на нашем примере с подсчетом числа шагов. Для всей серии из n = 2080 испытаний (таблица 8.1.1) коэффициент Стьюдента tp,n равен 2, и после весьма трудоемких вычислений по формулам (5.2.1) и (8.3.1) получаем следующее выражение:
Однако приведенный результат не является окончательным. В соответствии с излагаемыми далее – в параграфе 9.1 – правилами округления экспериментальных данных, предписывающими, сколько значащих цифр следует оставлять при оценке погрешности, выражение (8.3.2) следует записать в виде (9.1.2):
Возвратимся к нашему примеру об измерении расстояния шагами. Для сопоставления результатов обработки большого числа измерений (8.3.2) с гистограммами и кривой распределения удобно отметить эти данные на числовой оси (рисунок 8.1.1, б) в том же масштабе, что и на рисунке 8.1.1, а. Среднее значение (5.2.1) покажем вертикальной черточкой, а доверительный интервал (8.3.1) – круглыми скобками. Из рисунка 8.1.1 видно, что, поскольку расчеты выполнены по очень большому количеству измерений, <x> действительно совпадает с абсциссой максимума кривой распределения, а границы доверительного интервала удалены от максимума вдвое дальше точек перегиба. Если теперь из всей серии в 2080 испытаний произвольно, скажем, с помощью генератора случайных чисел, выбрать всего 5 значений x, получится приблизительно такой же результат. Пусть, например, выбраны числа x1 = 6251, x2 = 6368, x3 = 6583, x4 = 6483, x5 = 6505. После обработки по Стьюденту получим
Отметим эти данные, а также выбранные числа на оси x рисунка 8.1.1, в. Сравнивая выражения (1.1.6 – 1.1.8) и рисунки 8.1.1, а - 8.1.1, в, убеждаемся, что метод Стьюдента позволяет с весьма неплохой точностью находить интересующие нас величины по коротким сериям испытаний. Некоторое расхождение результатов вполне допустимо, особенно если вспомнить об экономии времени и усилий на измерения и обработку при сокращении количества опытов – в нашем примере с 2080 до 5!
Не нашли, что искали? Воспользуйтесь поиском:
|