ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Дифференциальное исчисление. Производная. Техника дифференцирования.Производная. Техника дифференцирования. Обозначение
Производной функции у = f(x) в точке х0 называется предел или , где = x2 –x1 – приращение аргумента, = у2 – у1 - приращение функции на отрезке [x1, x2]. Функция f(x) называется дифференцированной в точке х, если в этой точке существует производная . Геометрически производная представляет собой угловой коэффициент касательной к графику функции у = f(x) в точке х, т. е. . Если функция дифференцируема в каждой точке промежутка Х, то ее называют дифференцированной на промежутке Х.
Основные правила дифференцирования. Будем считать, что u=u(x) и v=v(x) – дифференцируемые функции, а С – постоянная. Тогда: 4. 5.
Не нашли, что искали? Воспользуйтесь поиском:
|