Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Задача 2. Однородные дифференциальные уравнения.




Дифференциальное уравнение (д.у.)

Называется однородным д.у. относительно и , если функция является однородной функцией своих аргументов нулевого измерения. Это значит

. Например функция - однородная

функция нулевого измерения.

Однородное д.у. всегда можно представить в виде

(1)

Введя новую искомую функцию , уравнение (1) можно привести к уравнению с разделяющимися переменными:

или переменные разделяются.

 

Пример 3.

Решить уравнение .

Решение. Запишем уравнение в виде , разделив на обе части уравнения. Сделаем замену . Тогда , . Получим или .

Разделяя переменные, будем иметь .

Отсюда интегрированием находим

или

, так как , то обозначая , получим

. Заменяя на , будем иметь общий интеграл

, отсюда - общее решение.

Ответ: .

Упражнения. Решить уравнения

1. . Ответ: .

2. . Ответ: .

3. . Ответ: .

4. . Соберем коэффициенты при . Ответ: .

 

ЗАДАНИЯ ПО ВАРИАНТАМ:

Решить однородные дифференциальные уравнения:

1. .
2. .
3. .
4. .
5. .
6. .
7. .
8. .
9. .
10. .
11. .
12. .
13. .
14. .
15. .
16. .
17. .
18. .
19. .
20. .
21. .
22. .
23. .
24. .
25. .
26. .
27. .
28. .
29. .
30. .

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных