Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Задача 4. Уравнение Бернулли.




Уравнение Бернулли имеет вид

(1)

(при это уравнение является линейным).

Уравнение (1) умножим на

(2)

Обозначим .

Уравнение (2) умножим на

или

(3)

(3) – линейное уравнение относительно переменной .

Таким образом, уравнение Бернулли можно привести к линейному уравнению.

Замечание. Уравнение Бернулли может быть проинтегрировано также методом вариации постоянной, как линейное уравнение и с помощью подстановки .

Пример 5.

Решить уравнение Бернулли .

Приведем уравнение к виду

.

Обе части уравнения умножим на и сделаем замену , причем, , получим - это линейное уравнение относительно .

Получили .

Поэтому .

Ответ: .

Упражнения. Решить уравнения

1. . Ответ: .

2. . Ответ: .

3. . Ответ: .

Уравнение следует переписать в виде

или - это уравнение Бернулли относительно функции .

4. . Ответ: .

Обе части уравнения следует умножить на и сделать замену .

ЗАДАНИЯ ПО ВАРИАНТАМ:

Решить уравнения Бернулли:

 

1. .
2. .
3. .
4. .
5. .
6. .
7. .
8. .
9. .
10. .
11. .
12. .
13. .
14. .
15. .
16. .
17. .
18. .
19. .
20. .
21. .
22. .
23. .
24. .
25. .
26. .
27. .
28. .
29. .
30. .

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных