![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Энергетическое представление в случае дискретного спектра: волновая функция, оператор и их свойства.Напомним некоторые результаты из теории представлений. Рассмотрим волновую функцию
где
Перепишем интеграл:
т.е. собственную функцию оператора
можно записать как действие оператора функцию в других переменных } = Это некоторое каноническое преобразование, которое осуществляется с помощью оператора Имеем преобразование вида Переменные Определение унитарного оператора Существует обратное преобразование: Функция Как коэффициент разложения И дальше будем писать Как всё это скажется на произвольном операторе?
Запишем это в форме ядра: C другой стороны,
Коэффициенты разложения определяются:
т.е. Используя, что вводится обозначение: Тогда получим:
здесь всё в здесь функция в координатном пред- q - представлении ставлении, а ядро оператора и интег- Не нашли, что искали? Воспользуйтесь поиском:
|