Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Математикалық анализ аппаратының дамуы




Математикалық анализ — математиканың функцияларды дифференциалдық және интегралдық есептеулер әдістерімен зерттейтін бөлімі. Математикалық анализдің негізгі зерттеу құралы — шектер әдісі. Математикалық анализдің дамуы нәтижесінде функциядан кеңірек ұғым функционал, оператор ұғымдары пайда болды. Табиғат пен техникада функциялар арқылы құбылыстар, қозғалыстар көптеп кездеседі. Сондықтан Математикалық анализдің функцияларды зерттейтін құрал ретіндегі маңызы зор. 19 ғасырда математикалық анализдің қолданылу өрісі едәуір кеңейді. Механика мен физиканың жаңа салаларының (үздіксіз орта механикасы, баллистика, электродинамика, магнетизм теориясы, термодинамика) негізгі аппараты ретінде дифференциалдық теңдеулер теориясы жедел дамыды. 18 ғасырда мұндай түрдегі кейбір теңдеулер ғана шешілген болса, жалпы әдістер тек 19 ғасырда ғана дамытылды, физика мен механиканың есептеріне байланысты қазір де дамытылуда. Аспан механикасының есептерінде дифференциалдық теңдеулердің сапалық теориясы қолданыс тапты (А. Пуанкаре, А.М. Ляпунов). Дифференциалдық теңдеулермен қатар интегралдық теңдеулер теориясы да дамытыла бастады.
Математикалық анализ бен математикалық физика дамуының геометрия мен алгебрадағы жаңа идеялармен түйіндесуі нәтижесінде математика мен оның қолдануында ерекше маңызды қызмет атқарып отырған математиканың үлкен бір жаңа саласы- функционалдық анализ жасалды. Статистикалық физика мен әр түрлі мәселелерді зерттеуге статистикалық әдістерді кең қолдану әрекеті ықтималдықтар теориясының алдына көптеген жаңа міндеттер қойды. Осы негізде бұл теория 19-20 ғасырларда күшті қарқынмен дамытылды.
19-20 ғасырлар бойы математиканың көне салалары да жаңа идеялармен, нәтижелермен толығып, дамып отырды. Мысалы, сандар теориясына математикалық анализ әдістерін қолдану бұрын элементар әдістер арқылы шешілмей келе жатқан көптеген мәселелерді шешуге мүмкіндік берді 17 ғ-ға дейін Математикалық анализ дербес есептер шешімінің жиынтығы ретінде ғана танылды. Әрбір есептер мен дербес топтар өз әдістерімен шешілді. 17 — 18 ғ-ларда И.Ньютон, неміс математигі әрі физигі Г.Лейбниц (1646 — 1716), Ресей физик-математигі, механигі Л.Эйлер (1707 — 1783), француз математигі және механигі Ж.Лагранж (1736 — 1813), т.б. ғалымдардың еңбектерінде бір жүйеге келтірілді. Ал Математикалық анализдің базасы — шектер теориясын 19 ғ-дың басында француз математигі О.Коши (1789— 1857) жасады.

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных