Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Азіргі алгебра мен сандар теориясынын пайда болу тарихы




Аналитикалық геометриядан басқа алгебра мен анализге тығыз байланысты дифференциалдық геометрия да дамыды. 17 ғасырда проективтік геометрияның да негізгі ұғымдары қалыптаса бастады. Бұл ғасырдағы математиканың басқа жетістіктерінің қатарына сандар теориясы жөніндегі Б. Паскаль мен П. Ферма зерттеулерін, комбинаториканың негізгі ұғымдарының жасалуын, ықтималдықтар теориясы жайлы алғашқы жұмыстарды атауға болады.
18 ғасыр. Математиканың айтылмыш тараулары, әсіресе математикалық анализ 18 ғасырда одан әрі дамыды. Бұл салада ұлы математиктер Л. Эйлер мен Ж. Лагранж ерекше еңбек сіңірді. Осы ғалымдар мен француз математигі А. Лежандр еңбектерінде сандар теориясы алғаш рет жүйелі ғылым санатына қосылды. 19 ғасырда алгебрадан алгебралық теңдеулерді радикал арқылы шешу мәселесі айқындалды (Н. Абель, Э. Галуа). Сонымен қатар алгебралық амалдардың жалпы қасиеттері мұқиет зерттеле бастады. Бұл жағдайда 20 ғасырда алгебраның жаңа бұтағы- абстрактілі немесе жалпы алгебраның жасалуына әкеп соқтырды. Осыған байланысты енгізілген топ, сақина, өріс ұғымдары математика мен жаратылыс танудың әр түрлі салаларында кеңінен қолданыс тапты. Алгебра мен геометрияның шекарасында норвег математигі С. Ли (1873 жылдан бастап) қазіргі физикада мәні зор үздіксіз топтар теориясын жасады.

Алгебра (арабша әл-жәбр)-Математиканың теңдеулерді шешу жөніндегі есептерге байланысты дамыған негізгі бөлімдерінің бірі. Алгебра атау және жеке ғылым саласы ретінде Әбу Абдаллаһ әл-Хорезмидің 1-ші, 2-ші дәрежелі теңдеулерге келтірілетін есептердің жалпы шешімі көрсетілген «Әл-жәбр уә-л-Мұқабала» атты еңбегінен бастау алады. Ал, Омар Хайям(1038/48-1123/24)— 3-ші дәрежелі теңдеулерді зерттеуді жүйелеп, өзінің «Алгебрасын» жазған. Орта ғасырлық шығыс ғұламалары гректер мен үнділердің математикасын түрлендіріп, қайта өңдеп Еуропаға табыс еткен. Амалдарды белгілейтін таңбалар енгізу нәтижесінде алгебра одан әрі дамыды. 17-ғасырдың ортасында қазіргі алгебрада қолданылатын таңбалар, әріптер толық орнықты. Ал 18-ші ғасырдың басында алгебра математиканың жеке бөлімі ретінде қалыптасты. 17-18—шің ғасырларда теңдеулердің жалпы теориясы (көпмүшеліктер алгебрасы, т. б) қарқындап дамыды. Оған сол кездегі ірі ғалымдар — Рене Декарт, Исаак Ньютон, Жан Даламбер мен Жозеф Лагранж үлкен үлес қосты. Неміс математигі Карл Гаусс кез-келген n дәрежелі алгебралық теңдеудің нақты не жорамал n түбірі болатындығын анықтаған (1799). 19-шы ғасырдың басында норвег математигі Нильс Абель және француз математигі Эварист Галуа дәрежесі 4 тен жоғары болатын теңдеулердің шешуін алгебралық амалдар көмегімен теңдеудің коэффиценті арқылы өрнектеуге болмайтындығын дәлелдеген.

 

Сандар теориясы — математиканың бүтін, рационал және алгебралық сандардың қасиеттерін зерттейтін саласы. Әсіресе оң натурал сандар 1, 2, 3, …, оның қасиеттері мен оларға арифмет. амалдар қолдану Сандар теориясының зерттеу аясында ерекше орын алады. Грекияда б.з.б. 6 ғ-да (Пифагор мектебінде) бүтін сандардың бөлінгіштігі зерттеліп, бүтін сандардың жеке түрлері (мыс., жай сандар, құрама сандар, квадрат сандар) ажыратылды, кемел сандардың құрылымы қарастырылды. Евклид “Негіздерінде” Евклид алгоритміне сүйеніп, екі бүтін санның ең үлкен ортақ бөлгішін табуға арналған жүйелі бөлінгіштік теориясы құрылды. Онда Евклид жай сандардың шексіз көп болатынын дәлелдеді. Диофанд (б.з.б. 3 ғ.) “Арифметика” деген еңбегінде теңдеулердің бүтін санды шешулерін табумен айналысып, Сандар теориясын дамытуға үлкен үлес қосты. Сандар теориясының кейбір мәселелеріҚытайда (2 ғ-дан бастап), Үндістанда (7 ғ-дан бастап), Шығыс араб елдерінде (9 ғ-дан бастап) қарастырылды. Еуропада Сандар теориясының дамуы П.Ферма (1601 — 65) зерттеулерінен басталады. Ферма өзінің атақты теоремасын дәлелдеген және бұл теорема салыстыру теориясында үлкен рөл атқарған кіші теорема болды.. 19 ғ-дың ортасында П.Дирихле (1805 — 59) арифмет. прогрессия туралы теоремасын дәлелдеп, өзінің функционалдық қатарын енгізді. Сандар теориясының дамуына ресейлік ғалымдар П.Чебышев (1821 — 94), А.Марков (1856 — 1922), И.Виноградов (1891 — 1983), т.б. үлес қосқан. Қазақстанда Сандар теориясының дамуын арттыруда Б.Оразбаев шәкірттерімен бірге жемісті еңбек етті. Аналит. әдістерді алгебрада қолдануды қажет ететін есептерді, яғни абсолют абельдік өрістердің асимптотик. таралу заңдылығы (Оразбаев), абсолют абельдік өрістер санының натурал қатарда орналасу заңдылығы (С.Кенжебаев, А.Бөленов), Дирихленің L-қатарларының теор.-функционалдық қасиеттері (Р.Тұрғаналиев, т.б.), жазық облыстардағы бүтін нүктелер санының бағасы (С.Әбләлимов), кейбір мультипликативтік функциялардың бағасы (И.Ильясов) зерттелді. Қазақстанда, негізінен, сандардың аналитик. теориясы дамуда. Қазіргі кезде Сандар теориясының шешілмеген мәселелері көп: жай егіз сандар мәселелері, n2+1 түріндегі жай сандардың шексіздігі, шеңбер ішіндегі және гипербола астындағы бүтін нүктелер, p+е сандарының трансценденттігі, т.б

61. Ықтималдықтар теориясы мен комбинаторлық анализдің дамуы. Ықтималдылық теориясы 17 ғ-дың орта кезінде пайда болды. Ықтималдылық теориясы 17 ғ-дың орта шенінде әйгілі ғалымдар Б.Паскаль (1623 – 62) мен П.Ферма (1601 – 65), Х.Гюйгенс (1629 – 95), Я.Бернулли (1654 – 1705), Муавр (1667 – 1754), Гаус (1777 – 1885) еңбектерінде пайда болып, әрі қарай дамыған. Қазір Лаплас (1812) пен Пуассон (1837) теоремаларының дәлелденуі осы кезеңге жатады; ал А.Лежандр (Франция, 1806) мен К.Гаусс (1808) ең кіші квадраттар тәсілін жетілдірді. Ықтималдылық теориясы тарихының үшінші кезеңі (19 ғ-дың 2-жартысы) негізінен орыс математиктері П.Л. Чебышев, А.М. Ляпунов және А.А. Марков (үлкені) есімдеріне байланысты. 19 ғ-дың 2-жартысында Батыс Еуропада матем. статистика (Белгияда А.Кетле, Англияда Ф.Гальтон) мен статис. физика (Австрияда Л.Больцман) бойынша көптеген еңбектер жазылды. Бұл еңбектер (Чебышев, Ляпунов және Марковтардың негізгі теор. еңбектерімен қатар) ықтималдылық теориясы тарихының төртінші кезеңінде ықтималдылық теориясының шешілуге тиісті мәселелерінің аясын кеңейтті. Бұл кезеңде шет елде де (Францияда Э.Борель, П.Леви, т.б., Германияда Р.Мизес, АҚШ-та Н. Винер, т.б., Швецияда Г.Крамер) КСРО-да өте маңызды зерттеулер жүргізілді. Ықтималдылық теориясының жаңа кезеңі С.Н. Бернштейннің зерттеулерімен байланысты. Ресейде А.Я. Хинчин мен А.Н. Колмогоров ықтималдылық теориясының мәселелеріне нақты айнымалы функциялар теориясының тәсілдерін қолдана бастады. Кейінірек (30-жылдары) олар процестер теориясының негізін қалады. Қазақстан ғалымдары да (І.Б. Бектаев, Б.С. Жаңбырбаев) Ықтималдылық теориясы бойынша зерттеулер жүргізіп келеді. Ықтималдылық теориясының негізін құрудағы қазіргі ең жиі тараған логик. сұлбаны 1933 ж. кеңес математигі А.Н. Колмогоров жасаған.

62. 17 ғасырдың бірінші жартысында еуропада интегралдық және дифференциалдық әдістердің дамуы. 17 ғасырдан бастап математиканың дамуында негізінен өзгеше кезең басталды. Енді математика зерттейтін сандық қатынастар мен кеңістік формаларының ауқымы сандар, шамалар және геометриялық фигуралармен шектелмейді,алғы шепке функция ұғымы шығады, өйткені математикаға қозғалыс, өзгеріс идеясы ашық енгізіледі.Математеканың дамуындағы бұл кезең 17 ғасырдағы математикалық жаратылыс танудың (ең әуелі механика, оптика) дамуына тікелей байланысты туды, жекелеген табиғат құбылыстарының ағымын жалпы, математикалық жолмен тұжырымдалған табиғат заңдары түрінде өрнектеу қажет болды.17 ғасырдағы математикалық жетістіктері логарифмдердің ашылуынан басталды. 1637 жылы Р. Декарт «Геометрия» атты еңбегін жариялады. Ол мұнда сол дәуірдегі бүкіл математикаға дерлік алгебраны арқау етіп аналитикалық геометрияны жасады. Осының арқасында математикалық анализдің түрлі салаларының- дифференциалдық интегралдық, вариациялық есептеулердің тууын дайындаған жалпы әдіс жасады. Декарттың бұл әдісі екі идеяға- координаталар мен айнымалы шамалар идеясына негізделді. Математикалық анализдің бастамаларын жасауда П.Ферма, И. Кеплер, Б. Паскаль, ағылшын математигі Дж. Валлис т.б. көп еңбек сіңірді. р (х)=0 теңдеуінің түбірлерін y=p(х) қисық сызығы мен абцисса осінің қиылысу нүктелері арқылы кескіндеу мүмкіндігіне тығыз байланысты алгебрада кез келген дәрежелі теңдеудің нақты түбірлерін зерттеу қолға алынды (Р. Декарт, И. Ньютон, француз математигі М. Ролль). И. Ферманың максимум және минимумдар, қисық сызықтарға жанама жүргізу жөніндегі зерттеулерінде дифференциалдық және интегралдық есептеулердің әдістері кездеседі (бірақ дараланып бөлінбеген). Шексіз аз шамалар анализінің тағы бір көзі И. Кеплер (1615) мен Б. Кавальери (1635) еңбектеріндегі айналу денелерінің көлемін және басқа есептерді шешуге қолданылған «бөлінбейтіндер методы» болып табылады. 17 ғасырдың аяғына таман И. Ньютон мен Г. Лейбниц еңбектерінде дәл мағынасындағы дифференциалдық және интегралдық есептеулердің негізі қаланды. Олар алғаш рет жаңа есептеудің негізгі амалдары дифференциалдау мен интегралдауды жалпы түрде қарастырып, олардың өзара байланысын тағайындады (Ньютон- Лейбниц формуласы). Алайда Ньютон мен Лейбниц бұл мәселеге қатысы әр түрлі көзқараста болды. Ньютон үшін бастапқы ұғымдар- механикалық есептерден келген «флюента» (айнымалы шама) және оның «флюксиясы» (айнымалы шаманың өзгеру жылдамдығы). Флюксияларды және флюенталар бойынша флюнсиялар арасындағы қатыстарды (дифференциалдау және дифференциалдық теңдеулер құру) табуды көздеген тура есепке Ньютон флюнсиялар арасындағы қатыстар бойынша флюенталарды табу жайлы кері еспті, былайша айтқанда дифференциалдық теңдеулерді интегралдаудың жалпы есебін қарсы қойды. Лейбниц болса әсіресе шекті шамалар алгебрасынан шексіз аз шамалар алгебрасына көшуге көп көңіл болды, ол интегралды ең әуелі саны шексіз көп шексіз аз шамалардың қосындысы ретінде, ал дифференциалдық есептеулердің негізгі ұғымын айнымалы шамалардың шексіз өсімшесі түрінде қарастырды. Бұл саладағы идеяларды Я. Бернулли, И. Бернулли, француз математигі Г. Лопиталь т.б. одан әрі дамытты. Аналитикалық геометриядан басқа алгебра мен анализге тығыз байланысты дифференциалдық геометрия да дамыды.

Сандық интегралдау - анықталған интегралдарды жуықтап есептеуге және дифференциалдық теңдеулерді жуық шешуге арналған математиканың бөлімі. Интегралдарды жуықтап есептеу формулалары квадратуралық формулалар деп аталады. Дифференциалдық теңдеулерді жуық шешудің көптеген аналитикалық әдістері бар. Олардың ішінде біртіндеп жуықтау әдістері, Чаплыгин әдісі, Риц әдісі, Галеркин әдісі т.б

63. Кеплердің интегралдық әдісі. Кеплер Иоганн (нем. Johannes Kepler 27.12. 1571, Германия, Вюртемберг, Вейль-дер-Штадт қ. – 15.11.1630, Бавария, Регенсбург қ.) - Немiс астрономы, математигі. ХVІІ ғ. адамзаттық ғылым-техника төңкерісінің дәуір бөлгіш тұлғаларының бірі. Кеплердiң зерттеулерi астрономия, механика, оптика және математика салаларына байланысты болады. Алғаш Кеплер протестант уағыздаушысы болғысы келді, бірақ оның матиматикалық қабілеттілігінің арқасында, Кеплерді 1594 ж. Граца (қазіргі Австрия) университетіне дәріс оқуға шақырады. Кеплер 1612 ж. Линц қ-на қоныс аударған. Осында Кеплер 14 жыл өмір сүрді. Ол император сарайының маңындағы математигі және астрономы атағы берілді. Математикадан сабақ беру және гороскоптар табыс әкелді.). И. Ферманың максимум және минимумдар, қисық сызықтарға жанама жүргізу жөніндегі зерттеулерінде дифференциалдық және интегралдық есептеулердің әдістері кездеседі (бірақ дараланып бөлінбеген). Шексіз аз шамалар анализінің тағы бір көзі И. Кеплер (1615) мен Б. Кавальери (1635) еңбектеріндегі айналу денелерінің көлемін және басқа есептерді шешуге қолданылған «бөлінбейтіндер методы» болып табылады.

64. Кавальери мен Торричеллидің «бөлінбейтіндер» әдісі. БӨЛІНБЕСТЕР ӘДІСІ, бөлінбейтіндер әдісі - пішіндердің аудандарының немесе көлемдерінің қатынастарын анықтауға арналған тәсілдердің жиынтығының атауы. Бөлінбестер әдісінің негізіне өлшемдерінің катынасы анықталатын пішіндердің "бөлінбейтін" (бөлшектенбейтін) бөліктерін салыстыру жатқызылған. Бөлінбестер әдісі ежелгі грек ғылымынан бастау алған. Біздің заманымыздан бұрынғы V — IV ғасырларда ғұмыр кешкен Демокрит (б.з.б. 460 — 370) денелерді "бөлінбейтін" атомдардың жиынтығы деп қарастырған. Архимед (б.з.б. 287 — 212) пішіндердің аудандары мен көлемдерін рычагтар іліміне қабыстыра отырып, жазық пішіндер шексіз көп параллел кесінділерден, ал геометриялық денелер шексіз көп параллел жазық қималардан құралған деп қарастыру арқылы анықтаған. Архимед бөлінбестер арқылы анықталған нәтижелерді түгесу әдісі бойынша қайтадан тексеру кәжет деп есептеген.

Бөлінбестер әдісі идеясы XVI — XVII ғасырлар шегіндегі зерттеулерде қайта жаңғырған. Бұл әдісті қайта өркендетуге неміс ғалымы Иоганн Кеплер' (1571 — 1630) мен итальян математигі 'Бонавентура Кавальери (1598 - 1647) көп үлес қосқан. 'Б.Кавальери дамытқан бөлінбестер әдісін одан кейін итальян физигі әрі математигі Эванджелиста Торричелли (1608 – 1647), ағылшын математигі Джон Валлис (1616 - 1703), француз матемагигі 'Блез Паскаль (1623 - 1662), т.б. ғалымдар зерттеген. Бөлінбестер әдісі интегралдық есептеудің жасалу жолындағы бір кезеңі болды.[1]






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных