Главная
Популярная публикация
Научная публикация
Случайная публикация
Обратная связь
ТОР 5 статей:
Методические подходы к анализу финансового состояния предприятия
Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века
Ценовые и неценовые факторы
Характеристика шлифовальных кругов и ее маркировка
Служебные части речи. Предлог. Союз. Частицы
КАТЕГОРИИ:
|
XIX – XX ғ.ғ. математиканың дамуы
19-20 ғасырлар бойы математиканың көне салалары да жаңа идеялармен, нәтижелермен толығып, дамып отырды. Мысалы, сандар теориясына математикалық анализ әдістерін қолдану бұрын элементар әдістер арқылы шешілмей келе жатқан көптеген мәселелерді шешуге мүмкіндік берді.Теориялық математиканың зерттеулер нәтижесін практика жүзінде қолдану шешілуге тиісті есепке (мәселеге) сан түрінде жауап алуды талап етеді. Осыған байланысты 19-20 ғасырларда математикадағы сандық әдістер оның дербес бір тармағына айналды. Көп еңбек тілейтін есептеуді қажет ететін мәселелерді шешуді жеңілдету, жеделдету ісі әуелі механика-математикалық машиналар мен аспаптарды, ал 20 ғасырдың 40 жылдарынан бастап тез әрекетті электрондық есептеуіш машиналарды талап етті. 19-20 ғасырларда дамытылған математиканың бір тармағы математикалық логика басқару туралы ғылым- кибернетикада және есептеу техникасында қолданыла бастады. Есептеу техникасының кең қолданылуына байланысты программалау теориясы пайда болды. 19 ғасырдың 2- жартысынан бастап математика тарихын қарастыру жедел қолға алынды. 20 ғасырдың 50 жылдарынан бастап математика ғылымының басқару теориясы, кибернетика, алгебралық геометрия, информация теориясы т.б. көптеген жаңа салалары пайда болды. Математиканың осылай қауырт дамуына жаратылыс тану ғылымдары ментехниканың математика алдына қойып отырған талаптары түрткі болды. Мысалы, өндірістік процесті автоматтандыру басқарудың математикалық теориясының тууына себепкер болды. №76.Матеематикалық анализ апаратының дамуы 19ғасырда математикалық анализдің қолданылу өрісі едәуір кеңейді. Механика мен физиканың жаңа салаларының (үздіксіз орта механикасы, баллистика, электродинамика, магнетизм теориясы, термодинамика) негізгі аппараты ретінде дифференциалдық теңдеулер теориясы жедел дамыды. 18 ғасырда мұндай түрдегі кейбір теңдеулер ғана шешілген болса, жалпы әдістер тек 19 ғасырда ғана дамытылды, физика мен механиканың есептеріне байланысты қазір де дамытылуда. Аспан механикасының есептерінде дифференциалдық теңдеулердің сапалық теориясы қолданыс тапты (А. Пуанкаре, А.М. Ляпунов). Дифференциалдық теңдеулермен қатар интегралдық теңдеулер теориясы да дамытыл бастады.Математикалық анализ бен математикалық физика дамуының геометрия мен алгебрадағы жаңа идеялармен түйіндесуі нәтижесінде математика мен оның қолдануындаерекше маңызды қызмет атқарып отырған математиканың үлкен бір жаңасаласы- функционалдық анализ жасалды. Статистикалық физика мен әр түрлі мәселелерді зерттеуге статистикалық әдістерді кең қолдану әрекеті ықтималдықтар теориясының алдына көптеген жаңа міндеттер қойды. Осы негізде бұл теория 19-20 ғасырларда күшті қарқынмен дамытылды.19-20 ғасырлар бойы математиканың көне салалары да жаңа идеялармен, нәтижелермен толығып, дамып отырды. Мысалы, сандар теориясына математикалық анализ әдістерін қолдану бұрын элементар әдісте арқылы шешілмей келе жатқан көптеген мәселелерді шешуге мүмкіндік берді(мысалы, Гольдбах прблемасы). Теориялық математиканың зерттеулер нәтижесін практика жүзінде қолдану шешілуге тиісті есепке (мәселеге) сан түрінде жауап алуды талап етеді. Осыған байланысты 19-20 ғасырларда математикадағы сандық әдістер оның дербес бір тармағына айналды.Көп еңбек тілейтін есептеуді қажет ететін мәселелердішешуді жеңілдету, жеделдету ісі әуелі механика-математикалық машиналар мен аспаптарды, ал 20 ғасырдың 40 жылдарынан бастап тез әрекетті электрондық есептеуіш машиналарды талап етті. 19-20 ғасырларда дамытылған математиканың бір тармағы математикалық логика басқару туралы ғылым- кибернетикада және есептеу техникасында қолданыла бастады. Есептеу техникасының кең қолданылуына байланысты программалау теориясы пайда болды.19 ғасырдың 2-жартысынан бастап математика тарихын қарастыру жедел қолға алынды. 20 ғасырдың 50 жылдарынан бастап математика ғылымының басқару теориясы, кибернетика, алгебралық геометрия, информация теориясы т.б. көптеген жаңа салалары пайда болды. Математиканың осылай қауырт дамуына жаратылыс тану ғылымдарымен техниканың математика алдына қойып отырған талаптары түрткі болды. Мысалы, өндірістік процесті автоматтандыру басқарудың математикалық теориясының тууына себепкер болды. №77. Математикалық анализдің қолданбалы жерлерінің дамуы Математиканың айтылмыш тараулары, әсіресе математикалық анализ 18 ғасырда одан әрі дамыды. Бұл салада ұлы математиктер Л. Эйлер мен Ж.Лагранж ерекше еңбек сіңірді. Осы ғалымдар мен француз математигА.Лежандр еңбектерінде сандар теориясы алғаш рет жүйелі ғылым санатына қосылды. Алгебрада швейцар математигі Г. Крамер (1750) сызықтық теңдеулер жүйесін шешу үшін анықтауыштарды енгізді.Ағылшын математигі А. Муавр мен Л. Эйлердің көрсеткіштік және тригонометриялық функциялардың байланысын көрсететін формулалары комплекс сандардың математикадағы қолдану өрісін кеңейте түсті. И. Ньютон, шотланд математигі Дж. Стирлинг, Л. Эйлер және П. Лаплас шектеулі айырымдарды есептеудің негізін қалады.К. Гаусс 1799 жылы алгебраның негізгі теоремасының бірінші дәлелін жариялады. Математикалық анализ әсіресе дифференциалдық теңдеулер әдістері механика мен физиканың, сондай-ақ техникалық процестердің заңдарын, математикалық өрнектеудің негізін қалады;жаратылыс тану мен техниканың ілгерілеуі осы әдістерге тікелей байланысты болды. Ағылшын математигі Б. Тейлор (1715) кез келген функцияларды дәрежелік қатарға жіктеу жөніндегі өзінің формуласын ашты. 18 ғасыр математиктері үшін қатарлар анализдің ең бір қуатты, икемді құралына айналды. Л. Эйлер, Ж. Лагранж бірінші ретті, ал Л. Эйлер,Г.Монж, П.Лаплас екінші ретті дербес туындылы дифференциалдық теңдеулердің жалпы теориясының негізін қалады. Математикалық анализдің ықпалымен аналитикалық механика, математикалық физика т.б. жаңа салалар қалыптаса бастады;математикалық анализдің айрықша бір бұтағы- вариациялық есептеу қалыптасып, маңызды қолданыс тапты. Ағылшын математигі А. Муавр, Я. Бернулли, П. Лаплас 17-18 ғасырлардағы жекелеген нәтижелерге сүйеніп ықтималдықтар теориясының негізін қалады.Геометрия саласында Л. Эйлер элементар аналитикалық геометрия жүйесін жасауды аяқтайды. Л. Эйлер, француз математигі А. Клеро, Г. Монж еңбектерінде кеңістіктегі қисық сызықтар мен беттердің дифференциалдық геометриясының негізі салынды. Неміс ғалымы Ламберт перспектива теориясын дамытты, ал Г. Монж сызба геометрияны аяқталған түрге келтірді.
Не нашли, что искали? Воспользуйтесь поиском:
|