![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Параллельное проектирование. Свойства параллельных проекций. Изображение фигур в стереометрии.
Параллельным переносом в пространстве называется такое преобразование, при котором произвольная точка (x; y; z) фигуры переходит в точку (x+a; y+b; z+c), где числа a, b, с одни и те же для всех точек (x; y; z).
В стереометрии изучаются свойства фигур в пространстве (т.е. свойства пространственных фигур). Многогранник представляет собой тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 1–10). Эти многоугольники называются гранями многогранника, а стороны и вершины многоугольников называются соответственно ребрами и вершинами многогранника. Многогранники могут быть выпуклыми (рис. 1) и невыпуклыми (рис. 2).
Приведем примеры отдельных многогранников.
Куб представляет собой многогранник, у которого шесть граней, и все они — равные квадраты. У куба 12 равных ребер и 8 вершин (рис. 3).
Параллелепипед представляет собой многогранник, у которого шесть граней, и каждая из них — параллелограмм. Параллелепипед может быть прямым (рис. 4) или наклонным (рис. 5).
Параллелепипед, все грани которого прямоугольники, называют прямоугольным. Прямоугольный параллелепипед изображается также, как и прямой. Из сказанного следует, что куб — это прямоугольный параллелепипед с равными ребрами.
это четырехгранник. Все его четыре грани — треугольники. Тетраэдр, все четыре грани которого — равные правильные треугольники, называется правильным тетраэдром (рис. 8). Правильный тетраэдр — это частный случай правильной треугольной пирамиды.
Параллелепипед — это призма, в основании которой лежит параллелограмм. Не нашли, что искали? Воспользуйтесь поиском:
|