ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Выпуклость и вогнутость линий точки перегиба.Линия называется выпуклой, если она пересекается с любой своей секущей не более чем в 2х точках. Линия наз-ся вогнутой, если она целиком лежит по 1 сторону от касательной, проведенной в любой ее точке. Точка перегиба - точка, отделяющая выпуклый участок дуги от вогнутого. Необходимый признак выпуклости и вогнутости: если линия на интервале выпуклая, то ее 2я производная <=0; если линия на интервале вогнутая, то ее f``(x)>=0 Достаточный признак: если f``(x) всюду в интервале “-”, то линия в интервале выпуклая; если f``(x)>0, то линия вогнутая Признаки точки перегиба: чтобы X0 была т. перегиба, <=> чтобы у`` в этой точке = 0 и меняла знак при переходе х через х0
Асимптоты. Опр. Часть графика называется бесконечной ветвью если при движении точки по этой части, расстояние между ей и началом координат стремится к бесконечности. Опр. Прямая называется асимптотой бесконечной ветви графика функции, если при удалении точки от начала координат по этой ветви, расстояние до данной прямой стремится к нулю. Теорема 1: x=a (вертикальная прямая) – является асимптотой для бесконечно вертикальной ветви графика функции y=f(x), тогда когда f(x)®µ, при x®a. Теорема 2: Критерий существования наклонной асимптоты прямая y=kx+b является асимптотой для правой (левой) ветви графика функции тогда, когда существует предел при: Док-во: Точка M0(x0,y0) и прямая L: Ax+By+Cz=0, то расстояние Пусть y=kx+b асимптота => d(M,l)®0=> kx-f(x)+b®0 тогда f(x)-kx®b при x®+µ существует предел:
Не нашли, что искали? Воспользуйтесь поиском:
|