ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Сущность и условия применения теории вероятностей. Теория вероятностей есть математическая наука, изучающая закономерности в случайных явлениях. Случайное явление – это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по-иному. Методы теории вероятности по природе приспособлены только для исследования массовых случайных явлений; они не дают возможность предсказать исход отдельного случайного явления, но дают возможность предсказать средний суммарный результат массы однородных случайных явлений. Т.в. служит для обоснования матем и прикладной стат-ки.к-я исп-ся при планир-иии орган-ции произ-ва и др. №35 Классическое определение вероятности основано на понятии равновозможности событий. Равновозможность событий означает, что нет оснований предпочесть какое-либо одно из них другим. Рассмотрим испытание, в результате которого может произойти событие A. Каждый исход, при котором осуществляется событие A, называется благоприятным событию A. Вероятностью события A (обозначают P(A)) называется отношение числа исходов, благоприятных событию A (обозначают k), к числу всех исходов испытания – N т.е. P(A)= k/ N. Из классического определения вероятности вытекают следующие ее свойства: Вероятность любого события заключена между нулем и единицей. Вероятность достоверного события равна единице. Вероятность невозможного события равна нулю
36.Вероятностное пространство. Вероятностное пространство – это математическая модель случайного эксперимента (опыта) в аксиоматике А.Н. Колмогорова. Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, необходимую для его математического анализа средствами теории вероятностей. Любая задача теории вероятности решается в рамках некоторого вероятностного пространства, полностью заданного изначально. Задачи, в которых вероятностное пространство задано не полностью, а недостающую информацию следует получить по результатам наблюдений, относятся к области математической статистики. Вероятностное пространство определяется тройкой компонент (символов) (Ω,S,P), где Ω-пространство элементарных событий S-∂(сигма)-алгебра событий, Р - вероятность, Ω-достоверное событие, S-система подмножеств пространства элементарных исходов Ω. Не нашли, что искали? Воспользуйтесь поиском:
|