ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Верхний и нижний пределыНижний предел последовательности — это наименьший элемент множества частичных пределов последовательности. Верхний предел последовательности — это наибольший элемент множества частичных пределов последовательности. Иногда нижним пределом последовательности называют наименьшую из её предельных точек, а верхним — наибольшую. Очевидно, что эти определения эквивалентны. Нижний предел последовательности : - (в отечественной литературе); Верхний предел последовательности : - (в отечественной литературе).
32) Предел функции и его свойства. Преде́л фу́нкции (предельное значение функции) в заданной точке, предельной для области определения функции, — такая величина, к которой стремится рассматриваемая функция при стремлении её аргумента к данной точке. Предел функции является обобщением понятия предела последовательности: изначально, под пределом функции в точке понимали предел последовательности элементов области значений функции, составленной из образов точек последовательности элементов области определения функции, сходящейся к заданной точке (предел в которой рассматривается); если такой предел существует, то говорят, что функция сходится к указанному значению; если такого предела не существует, то говорят, что функция расходится. Наиболее часто определение предела функции формулируют на языке окрестностей. То, что предел функции рассматривается только в точках, предельных для области определения функции, означает, что в каждой окрестности данной точки есть точки области определения; это позволяет говорить о стремлении аргумента функции (к данной точке). Но предельная точка области определения не обязана принадлежать самой области определения: например, можно рассматривать предел функции на концах открытого интервала, на котором определена функция (сами концы интервала в область определения не входят). В общем случае необходимо точно указывать способ сходимости функции, для чего вводят т.н. базу подмножеств области определения функции, и тогда формулируют определение предела функции по (заданной) базе. В этом смысле система проколотых окрестностей данной точки — частный случай такой базы множеств. Поскольку на расширенной вещественной прямой можно построить базу окрестностей бесконечно удалённой точки, то оказывается допустимым описание предела функции при стремлении аргумента к бесконечности, а, также, описание ситуации, когда функция сама стремится к бесконечности (в заданной точке). Предел последовательности (как предел функции натурального аргумента), как раз предоставляет пример сходимости по базе «стремление аргумента к бесконечности». Отсутствие предела функции (в данной точке) означает, что для любого заранее заданного значения области значений и всякой его окрестности сколь угодно близко от заданной точки существуют точки, значение функции в которых окажется за пределами заданной окрестности. Если в некоторой точке области определения функции существует предел и этот предел равен значению в данной функции, то функция оказывается непрерывной (в данной точке). Свойства пределов: - Одна и та же функция в одной и той же точке может иметь только один предел. - Сходящаяся функция локально сохраняет знак. - В частности, функция, сходящаяся к положительному (отрицательному) пределу, остаётся положительной (отрицательной) в некоторой окрестности предельной точки. - Сходящаяся функция локально ограничена в окрестности предельной точки. - Отделимость от нуля функций, имеющих предел, отличный от нуля. - Операция взятия предела сохраняет нестрогие неравенства.
33) Некоторые важные пределы. Если угол α выражен в радианах, то Числом e называется предел При нахождении многих пределов применяются следующие пределы Частные случаи При нахождении пределов вида необходимо иметь в виду следующее: 1) Если существуют конечные пределы 2) Если , то С находится с помощью формул 3) Если то, положив где
34) Сравнение бесконечно больших и бесконечно малых величин. Асимптотические разложения.
Бесконечно малая (величина) — числовая функция или последовательность, которая стремится к нулю. Бесконечно большая (величина) — числовая функция или последовательность, которая стремится к бесконечности определённого знака. Исчисление бесконечно малых — вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Бесконечно малая величина. Последовательность an называется бесконечно малой, если . Например, последовательность чисел — бесконечно малая. Функция называется бесконечно малой в окрестности точки x0, если . Функция называется бесконечно малой на бесконечности, если либо . Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если , то f(x) − a = α(x), . Бесконечно большая величина Во всех приведённых ниже формулах бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция xsin x, неограниченная с обеих сторон, не является бесконечно большой при . Последовательность an называется бесконечно большой, если . Функция называется бесконечно большой в окрестности точки x0, если . Функция называется бесконечно большой на бесконечности, если либо .
Отношение бесконечно малых величин образует так называемую неопределённость . Не нашли, что искали? Воспользуйтесь поиском:
|