Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Производная параметрически заданной функции.




 

 

В зависимости от правила, устанавливающего зависимость между множествами значений величин x и y, различают несколько способов задания функции. Наиболее привычным является представление функции в явном виде . Однако, в некоторых случаях удобно описывать функциональную зависимость множеством пар значений (x; y), которые вычисляются для каждого значения параметра t из промежутка (a; b). К примеру, все пары значений при задают окружность с центром в начале координат радиуса 3.


Определение параметрически заданной функции.

Таким образом, если определены при и существует обратная функция для , то говорят о параметрическом задании функции .


При исследовании параметрически заданной функции иногда приходится находить ее производную по аргументу x. В этой статье мы выведем формулу производной параметрически заданной функции , также остановимся на производной второго и n-ого порядка.


Вывод формулы производной параметрически заданной функции.

Пусть определены и дифференцируемы при , причем и имеет обратную функцию .

Сначала переходим от параметрического задания к явному. При этом получаем сложную функцию , аргументом которой является x.
По правилу нахождения производной сложной функции имеем: . Так как и обратные функции, то по формуле производной обратной функции , поэтому .

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных