Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Отношение бесконечно малых




Докажем теорему для случая, когда пределы функций равны нулю (то есть неопределённость вида .

Поскольку мы рассматриваем функции f и g только в правой проколотой полуокрестности точки a, мы можем непрерывным образом их доопределить в этой точке: пусть f (a) = g (a) = 0. Возьмём некоторый x из рассматриваемой полуокрестности и применим к отрезку теорему Коши. По этой теореме получим:

,

но f (a) = g (a) = 0, поэтому .

Дальше, записав определение предела отношения производных и обозначив последний через A, из полученного равенства выводим:

для конечного предела и

для бесконечного,

что является определением предела отношения функций.

[править] Отношение бесконечно больших

Докажем теорему для неопределённостей вида .

Пусть, для начала, предел отношения производных конечен и равен A. Тогда, при стремлении x к a справа, это отношение можно записать как A + α, где α — O(1). Запишем это условие:

.

Зафиксируем t из отрезка и применим теорему Коши ко всем x из отрезка :

, что можно привести к следующему виду:

.

Для x, достаточно близких к a, выражение имеет смысл; предел первого множителя правой части равен единице (так как f (t) и g (t) — константы, а f (x) и g (x) стремятся к бесконечности). Значит, этот множитель равен 1 + β, где β — бесконечно малая функция при стремлении x к a справа. Выпишем определение этого факта, используя то же значение ε, что и в определении для α:

.

Получили, что отношение функций представимо в виде (1 + β)(A + α), и . По любому данному ε можно найти такое ε1, чтобы модуль разности отношения функций и A был меньше ε, значит, предел отношения функций действительно равен A.

Если же предел A бесконечен (допустим, он равен плюс бесконечности), то

.

В определении β будем брать ; первый множитель правой части будет больше 1/2 при x, достаточно близких к a, а тогда .

Для других баз доказательства аналогичны приведённым

 

34. Исследование функции с помощью производной.

еорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f′(x) ≥ 0.

2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f′(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

 

Доказательство.

1) Если функция f(x) возрастает, то f(x + Äx) > f(x) при Äx>0 и f(x + Äx) < f(x) при Äх<0,

тогда:

 

2) Пусть f′(x)>0 для любых точек х1 и х2, принадлежащих отрезку [a, b], причем x1<x2.

 

Тогда по теореме Лагранжа: f(x2) – f(x1) = f′(å)(x2 – x1), x1 < å < x2

По условию f′(å)>0, следовательно, f(x2) – f(x1) >0, т.е. функция f(x) возрастает.

 

Теорема доказана.

 

Аналогично можно сделать вывод о том, что если функция f(x) убывает на отрезке [a, b], то f′(x)≤0 на этом отрезке. Если f′(x)<0 в промежутке (a, b), то f(x) убывает на отрезке [a, b].

Конечно, данное утверждение справедливо, если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b).

 

Доказанную выше теорему можно проиллюстрировать геометрически:

 

y y

 

ϕ ϕ ϕ ϕ

x x

 

 

Точки экстремума.

 

Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Äx) > f(x2) при любом Äх (Äх может быть и отрицательным).

 

Очевидно, что функция, определенная на отрезке может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

 

Определение. Точки максимума и минимума функции называются точками экстремума.

 

Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то производная функции обращается в нуль в этой точке.

 

Доказательство. Предположим, что функция f(x) имеет в точке х = х1 максимум.

Тогда при достаточно малых положительных Äх>0 верно неравенство:

, т.е.

Тогда

По определению:

 

Т.е. если Äх→0, но Äх<0, то f′(x1) ≥ 0, а если Äх→0, но Äх>0, то f′(x1) ≤ 0.

 

А возможно это только в том случае, если при Äх→0 f′(x1) = 0.

 

Для случая, если функция f(x) имеет в точке х2 минимум теорема доказывается аналогично.

Теорема доказана.

 

Следствие. Обратное утверждение неверно. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум. Красноречивый пример этого – функция у = х3, производная которой в точке х = 0 равна нулю, однако в этой точке функция имеет только перегиб, а не максимум или минимум.

 

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

 

Рассмотренная выше теорема дает нам необходимые условия существования экстремума, но этого недостаточно.

 

Пример: f(x) = ⎮x⎮ Пример: f(x) =

 

y y

 

 

x

 

x

 

В точке х = 0 функция имеет минимум, но В точке х = 0 функция не имеет ни

не имеет производной. максимума, ни минимума, ни произ-

водной.

 

Вообще говоря, функция f(x) может иметь экстремум в точках, где производная не существует или равна нулю.

Теорема. (Достаточные условия существования экстремума)

Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1).

Если при переходе через точку х1 слева направо производная функции f′(x) меняет знак с “+” на “-“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум.

 

Доказательство.

 

Пусть

 

По теореме Лагранжа: f(x) – f(x1) = f′(å)(x – x1), где x < å < x1.

 

Тогда: 1) Если х < x1, то å < x1; f′(å)>0; f′(å)(x – x1)<0, следовательно

 

f(x) – f(x1)<0 или f(x) < f(x1).

 

2) Если х > x1, то å > x1 f′(å)<0; f′(å)(x – x1)<0, следовательно

 

f(x) – f(x1)<0 или f(x) < f(x1).

Т. к. ответы совпадают, то можно сказать, что f(x) < f(x1) в любых точках вблизи х1, т.е. х1 – точка максимума.

 

Доказательство теоремы для точки минимума производится аналогично.

 

Теорема доказана.

 

На основе вышесказанного можно выработать единый порядок действий при нахождении наибольшего и наименьшего значения функции на отрезке:

 

1) Найти критические точки функции.

2) Найти значения функции в критических точках.

3) Найти значения функции на концах отрезка.

4) Выбрать среди полученных значений наибольшее и наименьшее.

 

35. Асимптоты графика функции.
Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные.

Определение: Вертикальной асимптотой графика функции называется вертикальная прямая , если или при каком-либо из условий: , , . Заметим, что мы при этом не требуем, чтобы точка принадлежала области определения функции , однако она должна быть определена по крайней мере в какой-либо из односторонних окрестностей этой точки: или , где






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных