ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Задачи на совместную работу.Рассмотрим еще один тип задач - задачи на совместную работу. В таких задачах обычно какую либо работу выполняют несколько человек или механизмов, работающих с постоянной для каждого из них производительностью. Начнем с некоторых указаний к задачам данного типа: Далее перейдём к решению различных задач данного типа. При решении таких задач возможны два случая: 1) объем выполненной работы известен; 2) объем выполненной работы неизвестен. Первый тип задач удобно решать, используя таблицу. Рассмотрим следующую задачу: " Два токаря вместе изготовили 350 деталей. Первый токарь делал в день 40 деталей и работал 5 дней, второй работал на 2 дня меньше. Сколько деталей в день делал второй токарь?" Составим таблицу:
Так как известны производительность и время работы первого токаря, найдем количество деталей, изготовленных первым токарем. 40*5 = 200 (дет.) – изготовил первый токарь. Рассмотри задачу: " Новая машина может выкопать канаву за 8 часов, а старая – за 12. Новая работала 3 часа, а старая - 5 часов. Какую часть канавы осталось выкопать?" Рассмотрим чертёж:
Для начала разделим первый отрезок на восемь частей, так как работа выполняется за 8 часов. Так как новая машина работала 3 часа, то выполнила части все работы. Отмечаем на третьем отрезке - . Теперь рассмотрим осложнённую задачу из подготовительных курсов ЕГЭ: "Бак заполняют керосином за 2 часа 30 минут с помощью трёх насосов, работающих вместе. Производительность насосов относится как 3:5:8. Сколько процентов объёма будет заполнено за 1 час 18 минут совместной работы второго и третьего насоса?" Решение: так как объём бака не указан, то примем его за 1. Пусть коэффициент пропорциональности равен х, тогда производительности насосов равны 3х, 5х, 8х. И время наполнения бака при совместной работе всех трёх насосов равно = или, по условию задачи, 2 часа 30 минут. Решим уравнение: = 2,5; х = . Рекомендуемая литература: Основные источники: 1. Башмаков М.И., математика: учебник для нач. и сред. Проф. образования, -М.: Образовательно-издательский центр «Академия», 2010.- 256 с. 2. Башмаков М.И. Алгебра и начала математического анализа (базовый уровень). 10 кл. – М., 2005. 3. Башмаков М.И. Алгебра и начала математического анализа (базовый уровень). 11 кл. – М., 2005. 4. Башмаков М.И. Математика (базовый уровень). 10—11 кл. – М., 2005. 5. Башмаков М.И. Математика: 10 кл. Сборник задач: учеб. пособие. – М., 2004. Дополнительные источники: 1. Алимов Ш.А. и др. Алгебра и начала анализа. 10 (11) кл. – М., 2000. 2. Атанасян Л.С. и др. Геометрия. 10 (11) кл. – М., 2000. 3. Башмаков М.И. Алгебра и начала математического анализа (базовый уровень). 10 кл. – М., 2005. 4. Башмаков М.И. Алгебра и начала математического анализа (базовый уровень). 11 кл. – М., 2005. 5. Башмаков М.И. Математика (базовый уровень). 10—11 кл. – М., 2005. 6. Башмаков М.И. Математика: 10 кл. Сборник задач: учеб. пособие. – М., 2004. 7. Башмаков М.И. Математика: учебник для 10 кл. – М., 2004. 8. Колмогоров А.Н. и др. Алгебра и начала анализа. 10 (11) кл. – М., 2000. 9. Колягин Ю.М. и др. Математика (Книга 1). – М., 2003. 10. Колягин Ю.М. и др. Математика (Книга 2). – М., 2003. 11. Луканкин Г.Л., Луканкин А.Г. Математика. Ч. 1: учебное пособие для учреждений начального профессионального образования. – М., 2004. 12. Пехлецкий И.Д. Математика: учебник. – М., 2003. 13. Смирнова И.М. Геометрия. 10 (11) кл. – М., 2000. Интернет ресурсы: 1. Колмогоров А.Н. (ред.) — Алгебра и начала анализа: Электронная книга. Lib.mexmat.ru/books/3307 2. Алгебра и начала анализа. 10-11 класс. Учебник. Мордкович e-ypok.ru/content/ 3. Математика для колледжей» Математический Портал – библиотека math-portal.ru Не нашли, что искали? Воспользуйтесь поиском:
|