![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Практическое занятие №5 ОПТИМИЗАЦИЯ КОЛИЧЕСТВА ПОСТОВ СТОЦель занятия – изучить методику и получить навыки оптимизации количества обслуживающих постов СТО методами теории массового обслуживания на ЭВМ с помощью системы MathCad. Задачи занятия: 1. Изучить простейшие системы массового обслуживания, их особенности и расчет характеристик эффективности функционирования. 2. Изучить методику оптимизации количества постов СТО. 3. Выполнить оптимизацию с помощью системы MathCad и сделать выводы. Теоретическая часть При организации обслуживания автомобилей на станции технического обслуживания (СТО) необходимо учитывать возможные простои автомобилей, связанные с очередью, а также затраты на содержание обслуживающих постов. Очевидно, что при увеличении количества постов СТО происходит рост затрат на содержание оборудования, производственных рабочих, производственных площадей, но одновременно снижается время, а соответственно, и потери средств, связанные с простоем автомобилей из-за ожидания обслуживания. Критерием оптимальности количества обслуживающих агрегатов является минимум целевой функции – суммарных затрат от простоя автомобилей на ТО и затрат на содержание обслуживающих постов [12, 13]: С= С пр+ С сод® min, (2.23) где С пр – потери от простоя автомобилей на ТО, руб./ч: С пр= t сист с прl; (2.24)
С сод= nс сод; (2.25)
Решение этой задачи во многом зависит от определения среднего времени простоя автомобиля на техническом обслуживании t сист, которое может быть рассчитано с помощью математического аппарата теории массового обслуживания [7, 16], так как совокупность обслуживающих постов является элементом обычной системы массового обслуживания. Системы массового обслуживания (СМО) подразделяются на несколько групп [7]: - открытые и закрытые; под открытыми СМО понимаются такие, у которых интенсивность потока заявок не зависит от состояния самой СМО; - одноканальные и многоканальные, соответственно, имеющие один или несколько каналов (постов) обслуживания; - с отказами или с очередью, т.е. различающимися по отношению к заявкам, поступающим на обслуживание; в первом случае, если заявка поступила в CМО, а та в этот момент полностью занята, то заявка покидает СМО, а во втором случае заявка ставится в очередь на обслуживание; - без ограничения длины очереди и с ограничением очереди; данные системы отличаются возможностью все заявки ставить в очередь на обслуживание или только часть их; остальные, в случае полной занятости СМО и зоны ожидания обслуживания, покидают СМО без обслуживания. Элементами систем массового обслуживания являются входной поток заявок (требований), очередь, посты обслуживания (каналы) и выходящий поток. Для упрощения расчета характеристик систем массового обслуживания принимают, что потоки событий, переводящие систему из состояния в состояние, являются простейшими (стационарными и пуассоновскими). Это означает, что интервалы времени между событиями в потоках имеют показательное (экспоненциальное) распределение с параметром, равным интенсивности данного потока. Соответственно системы массового обслуживания, имеющие простейшие потоки, называют простейшими СМО, а случайные процессы, происходящие в СМО, – марковскими случайными процессами с дискретным состоянием и непрерывным временем. Как правило, задачи теории массового обслуживания, касающиеся простейших СМО, решаются с помощью схемы гибели и размножения (см. рис. 2.9) [12, 13]. Это название заимствовано из биологических задач, где состояние популяции Sk означает в ней k единиц. Переход вправо связан с размножением единиц, а влево – с их гибелью. Интенсивность размножения l i проставлена у стрелок, ведущих слева направо, интенсивность гибели m i –у стрелок, ведущих справа налево.
Рис. 2.9. Граф состояний системы массового обслуживания Финальные вероятности состояний согласно данной схеме определяются по формулам [7]:
(2.26)
Для их определения необходимо рассчитать финальные вероятности состояний системы массового обслуживания. Финальными они называются потому, что рассматриваются в период, когда потоки заявок и обслуживаний находятся в финальном – стационарном режиме, при котором вероятности состояний и другие характеристики системы не зависят от времени. Простейшая открытая система массового обслуживания связана с двумя потоками: потоком заявок с параметром, равным интенсивности потока заявок l, и встречным потоком обслуживаний с параметром, равным интенсивности обслуживания m. Под потоком обслуживаний понимается поток заявок, обслуживаемых одним непрерывно занятым каналом. Отношение интенсивностей потоков называется приведенной плотностью потока заявок j (коэффициентом загрузки системы): Эффективность функционирования системы массового обслуживания оценивается несколькими показателями [7, 12]. К ним относятся: вероятность отсутствия очереди Р 0, т.е. вероятность того, что все n обслуживающих агрегатов свободны; вероятность занятости k каналов обслуживания Pk; вероятность отказа в обслуживании Так как системы массового обслуживания имеют определенные отличия в функционировании, то и перечисленные выше характеристики рассчитываются по различным формулам, приведенным в приложении 12. 2. Ознакомиться с условиями обслуживания автомобилей на СТО и подобрать адекватную простейшую систему массового обслуживания (приложение 12). 3. Рассчитать характеристики системы массового обслуживания, используя систему MathCad.
Методика проведения занятия 1. Получить исходные данные у преподавателя и занести их в табл. 2.5. Таблица 2.5 Исходные данные
4. Составить целевую функцию – суммарных затрат от простоя автомобилей и затрат на содержание постов ТО. 5. Построить зависимости целевой функции от количества постов ТО и определить их оптимальное число, заполнив табл. 2.6. 6. Сделать выводы по проделанной работе.
Таблица 2.6 Зависимость составляющих целевой функции от количества постов в зоне ТО
Вопросы для самостоятельной работы 1. Что такое система массового обслуживания, назовите ее основные элементы. 2. Опишите целевую функцию для оптимизации числа постов зоны ТО. 3. Нарисуйте граф состояний СМО и объясните его. 4. Перечислите характеристики эффективности функционирования простейшей СМО и поясните методику их расчета. 5. Перечислите простейшие системы массового обслуживания и охарактеризуйте их. 6. Какие СМО называются простейшими? 7. Какой критерий оптимизации был принят при выполнении данной работы? 8. Что понимается под схемой гибели и размножения? 9. Как определить вероятность отсутствия заявок в системе? 10. Как определить вероятность того, что заняты все обслуживающие посты СМО? 11. Как определить время нахождения автомобиля в очереди на обслуживание? 12. Как определить время нахождения автомобиля на обслуживании? 13. Как определить коэффициент загрузки системы и как он должен соотноситься с числом обслуживающих постов? Не нашли, что искали? Воспользуйтесь поиском:
|