Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Билет 55. Сингулярное разложение матрицы и обобщенные решения.




Т Пусть V и W – евклидовы (унитарные) пространства, и A из L(V, W), rgA = r, p1>=…>=pr>0 ненулевые его сингулярные числа, натуральное k <=r, то

min{B L(V,W) rgB <= k}||A – B||2 = pk+1

Док-во:

1) В силу согласованности спектральной нормы с евклидовыми векторными нормами

||(A-B)x||e<= ||A-B||2 ||x||E è ||A-B||2 >=||Ax – Bx||E, ||x||=1

2) Рассмотрим сингулярные базисы e1,…en, f1,…,fn, {Aei=pifi, i<=r; Aei=0, i>r}

3) Рассмотрим оператор B, rgB <= k, L=L(e1,…,ek+1) è размерностьkerB пересеченного с L>= 1, значит есть общий нормированный вектор, по экстремальному св-ву сингулярных чисел (Б57) ||Ax0|| >= pk+1, из принадлежности к ядру ||Ax0 – Bx0||E =||Ax0|| è ||A-B||2 >=pk+1, для любого B, rgB <=k

4) Неравенство достигается для B, rgB=k {Bei=pifi, i<=k, Bei=0, i>k}, тк для оператора A-B максимальное сингулярное число – pk+1

Т Спектральное расстояние от заданной невырожденной матрицы до множества вырожденных матриц предыдущего ранга равно её минимальному сингулярному числу (inf{|B|=0}||A-B||2 = inf{rgB<=n-1}||A-B|| = pn

Пусть уравнение Az = u разрешимо. Нормальным решением называется такое решения, что его норма наименьшая (||z0||=inf{z из H}||z||E), H – множество решений.

Т Для любого разрешимого уравнения нормальное решение существует и единственно.

Док-во: Сушествование: множество всех решений – линейное многообразие ядра оператора (показать двухстороннее вложение), в евклидовом (унитарном) пр-ве существует единственный вектор сдвига, ортогональный направляющему подпространству, причем он имеет наименьшую длину – существование доказано.

Единственность: пусть другое нормальное решение, оно имеет наименьшую длину (равно по длине z0) и раскладывается через вектор ядра и z0 (z0 +w)è ||z||E2 = ||z0||E2 + ||w||E2 è w= 0. Доказано.

Уравнение не обязано иметь решение. Вектор r = Az – u –функционал невязки, при равенстве его нормы 0 z – решение. Поскольку 0 значение нормы – наименьшее, значит можно рассматривать решение как вектор, невязка которого имеет наименьшую норму (минимизирующий функционал невязки). Для неразрешимых уравнений это тоже имеет смысл, те вектор называется минимизирующим функционал невязки, когда значине p(Az, u) = ||Az-u||E – минимально. Вектор называют псевдорешением (обобщенным решением), если ||Az+-u||E2 = inf{z из V}||Az – u||E2, те псевдорешение – вектор минимизирующий функционал невязки.

Т Псевдорешение существует для любого операторного уравнения.

Док-во: ||Az+ - u||E = inf{z V}||Az – u||E = inf{z V}|Az – u| = inf{z V}p(Az, u) =

=inf {y imA}p(y, u) è Az+ - вектор наилучшего приближения правой части к образу оператора, те это ортогональная проекция вектора правой части на образ оператора, те z+ - решение в обычном смысле Az = g (g – проекция вектора).

Уравнение A*Az = A*u называется нормальным уравнением.

Т Вектор z+ пространства является псевдорешением тогда и только тогда, когда он решение нормального уравнения (Az+ = g (предыдущая теорема), покажем, что эти уравнения эквивалентны, A*u=A*(g + h) = A*g + A*h, h – из ортогонального дополнения образа самого оператора, те из ядра сопряженного к нему оператора, так что Az=g è A*Az=A*g, если же z – решение A*Az = A*g è A*(Az-g)=0 è Az – g из kerA*= imTA, но Az – из образа оператора ==Ю Az-g из образа è Az-g=0).

Псевдорешение наименьшей длины называется нормальным псевдорешением. Из того, что псевдорешение является решением некоторого уравнения следует, что нормальное псевдорешение единственно. Сингулярные базисы оператора позволяют получить явные выражения для псевдорешения и нормального псевдорешения. Разложим псевдорешение по правому базису и из того, что псевдорешение – решение нормального уравнения, получим a1p1^2e1+…+arpr^2er = A*u, из ортонормированности базиса получаем, что akpk^2= (A*u, ek)=(u,Aek), k <=rg. Учитывая, что pk^2= (Aek, Aek) è ak=(A*u, ek)/pk^2 = =(u, Aek)/(Aek, Aek), из чего получим общий вид псевдорешения z+=Add(k=1 n)akek, где a1,..ar определены соотношением, а остальные произвольны, откуда получаем общий вид нормального псевдорешения z+=Add(k=1, r)akek.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных