ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
A. Сіметрычныя паліномы. Формулы Віета. Асноўная тэарэма пра сіметрычныя паліномы (без доказу).К -камутатыўнае колца з адзінкай. Азн.1: Паліном f(x1,…,xn) K[x1,…,xn] наз сіметрычным, калі ён не змяняецца пры перастаўленне двух зменных f(x1,…,xi,…,xj,…,xn)=f(x1,…,xi-1,xj,xi,…,xj-1,xi,xj,..,xn) 1=<i<j=<n. Тэарэма1: Мноства ўсіх сіметрычных паліномаў з К[x1,…,xn] ёсць падколца колца К[x1,…,xn]. Тэарэма2: Палиномы σ1=х1+х2+..+xn σ2=х1 х2+х1 х3+..+ х1xn+ х2 х3+…+ хn-1 хn σ3=х1 х2 х3+х1 х2х4+….+ хn-2 хn-1 хn ………………. σn=х1 х2…хn называюцца элементарнымі сіметрычнымі паліномамі ад n зменных. Коэфіцыенты паліномаў ад адной зменных = элементарных сіметрычным паліномаў ад каранёў гэтага паліномаў са знакам “+” ці “--” наз формулы Віета. Тэарэма1(Пра сіметрычны паліном): Няхай К - камутатыўнае колца з адзінкай. Для адвольнага сіметрычнага паліному f(x1,…,xn) K[x1,…,xn] існуе адзіны паліном g(x1,…,xn) K[x1,…,xn] такі,што f(x1,…,xn)= g(ɓ1(x1,…,xn), ɓ2(x1,…,xn),…,ɓn(x1,…,xn)).
Не нашли, что искали? Воспользуйтесь поиском:
|