ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
ПОПЕРЕЧНЫЕ И ПРОДОЛЬНЫЕ ВОЛНЫ. УРАВНЕНИЕ БЕГУЩЕЙ ВОЛНЫ.Различают поперечные и продольные волны. В поперечной волне частицы среды колеблются перпендикулярно направлению её распространения, в продольной волне – вдоль него. На рис.7.7 представлен процесс образования поперечной волны, распространяющейся вдоль оси . На каждой строчке показано положение нескольких частиц в выбранный момент времени. Частицы волны движутся вверх и вниз около равновесного положения. Волна не «бежит» в направлении распространения, происходит только передача колебательного движения и его энергии. Основным свойством всех бегущих волн является перенос энергии без переноса вещества.
Геометрическое место точек, до которых доходят колебания к моменту времени , называется фронтом волны (волновым фронтом). Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновые поверхности могут иметь любую форму. В простейших случаях это плоскость или сфера. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне – множество концентрических сфер. 4.5.6 Уравнение плоской бегущей волны Уравнение волны описывает зависимость смещения колеблющейся частицы от координат и времени : . (7.22)
. (7.23) Так как точка была выбрана произвольно, то уравнение (7.23) позволяет определить смещение любой точки среды, вовлечённой в колебательный процесс, в любой момент времени, поэтому называется уравнением плоской бегущей волны. В общем случае оно имеет вид: (7.24) где - амплитуда волны; – фаза плоской волны; – циклическая частота волны; – начальная фаза колебаний. Подставляя в это уравнение выражения для скорости () и циклической частоты (), получим: (7.25) Если ввести волновое число , то уравнение плоской волны можно записать в виде: . (7.26) ВОПРОС №22 Не нашли, что искали? Воспользуйтесь поиском:
|