Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Исследование функции на экстремум, монотонность и точки перегиба функции.




Монотонность функции

Функция называется возрастающей на промежутке , если для любых точек и из промежутка , удовлетворяющих неравенству . Функция называется убывающей на , если из условия следует .

Теорема. Если функция непрерывна на отрезке , дифференцируема на интервале , то для того, чтобы была возрастающей (убывающей) необходимо и достаточно, чтобы в каждой внутренней точке интервала .

Дифференцируемая функция является возрастающей на промежутке тогда и только тогда, когда .

 

Выпуклость и перегибы графика функции

Графиком функции , заданной на множестве , называют множество точек плоскости с координатами . График называют выпуклым вниз на промежутке , если касательная к графику в любой точке этого промежутка расположена ниже графика. Если касательная расположена выше графика, то график называют выпуклым вверх. Точка, в которой график меняет направление выпуклости, называется точкой перегиба.

Если на промежутке вторая производная положительна, то график является выпуклым вниз на этом промежутке. Если на промежутке , то график является выпуклым вверх на промежутке .

Точка может быть точкой перегиба только в том случае, когда , либо не существует – необходимое условие перегиба. Однако равенство нулю или не существование второй производной в точке не означает еще, что в точке будет перегиб графика. Поэтому нужно дополнительно исследовать такие точки.

I правило. Если равна нулю или не существует и при переводе через точку меняет знак, то ‑ точка перегиба графика функции .

II правило. Если и , то является точкой перегиба графика функции .

Локальный экстремум

Точка называется точкой локального максимума функции , если существует интервал , содержащий точку такой что .

Точка называется точкой локального минимума функции , если существует интервал , содержащий точку такой что .

Точки локального минимума и локального максимума называются точками локального экстремума.

Необходимым условием локального экстремума дифференцируемой функции является выполнение равенства . Поэтому точки, в которых дифференцируемая функция может иметь локальный экстремум, находят, решая уравнение: .

Решения этого уравнения называют стационарными точками.

Глобальный экстремум

Непрерывная на отрезке функция принимает свое наибольшее значение и свое наименьшее значение в точках этого отрезка. Эти значения могут достигаться либо в стационарных точках отрезка, либо в точках недифференцируемости функции, либо в граничных точках отрезка. Поэтому для нахождения значений и поступают следующим образом.

· Находят стационарные точки функции;

· Находят точки , в которых производная не существует или обращается в бесконечность;

· Вычисляют значения:

‑ и выбирают среди этих чисел наибольшее и наименьшее.

Это и будут и ‑ глобальные экстремальные значения.

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных