Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Теорема 13. Якщо функція диференційовна в точці , тоді існують границі та і вони дорівнюють відповідно А і В.




Означення. Нехай функція визначена в точці і в її деякому околі. Якщо існує границя , то вона називається частинною похідною за х (за у) функції у точці і позначається , або , або . Таким чином, , . Із означення частинних похідних матимемо, що вони шукаються за тими правилами, що й похідні функції однієї змінної. Треба лише памятати, що при знаходженні у вважається сталою, а при знаходженні змінна х вважається сталою.

Тепер можна сформулювати теорему 13 інакше:






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных