ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
яя я яяя я яяя я я яяя я ввввв яяяя ввввв яяяяя в ввя 20 страницаНейтрализация сточных вод предназначена для выделения из них кислот, щелочей, а также солей металлов на основе кислот и щелочей. Процесс нейтрализации основан на объединении ионов водорода и гидроксильной группы в молекулу воды, в результате чего сточная вода приобретает значение рН ® 6,7 (нейтральная среда). Нейтрализацию кислот и их солей осуществляют щелочами или солями сильных щелочей: едким натром, едким кали, известью, известняком, доломитом, мрамором, мелом, магнезитом, содой, отходами щелочей и т. п. Наиболее дешевым и доступным реагентом для нейтрализации кислых сточных вод является гидроокись кальция (гашеная известь). Для нейтрализации сточных вод с содержанием щелочей и их солей (сточные воды целлюлозно-бумажных и текстильных заводов) можно использовать серную, соляную, азотную, фосфорную и другие кисло- ты.Теоретический расход щелочей (кислот) для нейтрализации содержащихся в сточных водах кислот (щелочей) определяют в соответствии с уравнениями реакций нейтрализации по формуле q = сМэ/Мк, где с — концентрация кислоты (щелочи) или их солей в сточной воде; МэиМк — молекулярные массы щелочи (кислоты) и кислоты (щелочи) или их солей. На практике используют три способа нейтрализации сточных вод: 236. фильтрационный — путем фильтрования сточной воды через насадки кусковых или зернистых материалов; 237. водно-реагентный — добавлением в сточную воду реагента в виде раствора или сухого вещества (извести, соды или шлака); нейтрализующим раствором может быть и щелочная сточная вода; 238. полусухой — перемешивание высококонцентрированных сточных вод (например, отработанного гальванического раствора) с сухим реагентом (известью, шлаком) с последующим образованием нейтральной тестообразной массы. Сорбцию применяют для очистки сточных вод от растворимых примесей. В качестве сорбентов используют любые мелкодисперсные материалы (золу, торф, опилки, шлаки, глину); наиболее эффективный сорбент — активированный уголь. Расход сорбента т = = Q(cо — ск)/а, где Q — расход сточной воды, м3/с; с0 и ск — концентрации примесей в исходной и очищенной сточной воде, кг/м3; а — удельная сорбция, характеризующая количество примесей, поглощаемых единицей массы сорбента, кг/с. Ионообменную очистку применяют для обессоливания и очистки сточных вод от ионов металлов и других примесей. Очистку осуществляют ионитами — синтетическими ионообменными смолами, изготовленными в виде гранул размером 0,2...2 мм. Иониты изготовляют из нерастворимых в воде полимерных веществ, имеющих на своей поверхности подвижный ион (катион или анион), который при определенных условиях вступает в реакцию обмена с ионами того же знака, содержащимися в сточной воде. Различают сильно- и слабокислотные катиониты (в Н+- или Na+- форме) и сильно- и слабоосновные аниониты (в ОН- или солевой форме), а также иониты смешанного действия. Ионообменную очистку реализуют последовательным фильтрованием сточной воды через катиониты и аниониты. При контакте сточной воды с катионитом в водородной форме имеет место обмен катионов растворенных в воде солей на Н+-ионы катионита в соответствии с уравнением реакции п[К]Н + Ме"+ ^ [К]„Ме + пН+ где К — «скелет» (радикал) катионита; Me — извлекаемый из сточной воды катион металла; п — заряд катиона. При этом имеет место увеличение кислотности сточной воды. При контакте сточной воды с анионитом в гидроксильной форме происходит обмен анионов кислот на ОН~-ионы анионита в соответствии с уравнением реакции т[А„]ОН + А" ^ [A„]WA + тОН~ где Ап — «скелет» (радикал) анионита; А — извлекаемый из сточной воды анион; т — заряд аниона. В зависимости от вида и концентрации примесей в сточной воде, требуемой эффективности очистки используют различные схемы ионообменных установок. Для очистки сточных вод от анионов сильных кислот применяют технологическую схему одноступенчатого Н-катионирования и ОН-анионирования с использованием сильнокислотного катионита и слабоосновного анионита (рис. 10.21, а). Для более глубокой очистки сточных вод, в том числе от солей, применяют одно- или двухступенчатое Н-катионирование на сильнокислотном катионите с последующим двухступенчатым ОН-анионировани- ем на слабо-, а затем на сильноосновном анионите (см. рис. 10.21, б). При содержании в сточной воде большого количества диоксида углерода и его солей происходит быстрое истощение емкости силь- Рис. 10.21. Технологическая схема ионообменной очистки сточных вод:
а — одноступенчатая очистка; б — очистка с двуступенчатым абонированием; в — очистка с промежуточной дегазацией и двуступенчатым анионированием; К — катионито- вый фильтр; А — анионитовый фильтр; Д — декарбонизатор; ПБ — промежуточный бак а б ноосновного анионита. Для уменьшения истощения сточную воду после катионитового фильтра дегазируют в специальных дегазаторах с насадкой из колец Рашига или в других аппаратах (см. рис. 10.21, в). При необходимости обеспечивать значение рН «6,7 и очистки сточной воды от анионов слабых кислот вместо анионитовых фильтров второй ступени используют фильтр смешанного действия, загружаемый смесью сильнокислотного катионита и сильноосновного анионита. Электрохимическая очистка, в частности электрохимическое окисление, осуществляется электролизом и реализуется двумя путями: окислением веществ путем передачи электронов непосредственно на поверхности анода или через вещество — переносчика, а также в результате взаимодействия с сильными окислителями, образовавшимися в процессе электролиза. Наличие в сточной воде достаточного количества хлоридионов обусловливает появление в ней при электролизе активного хлора (С12, НОС1, С120, С1СГ, СЮ3), который является сильнейшим окислителем и способен вызывать глубокую деструкцию многих органических веществ, содержащихся в сточных водах. Электрохимическое окисление применяют для очистки сточных вод гальванических процессов, содержащих простые цианиды (КСС1, NaCCl) или комплексные цианиды цинка, меди, железа и других металлов. Электрохимическое окисление осуществляют в электролизерах (обычно прямоугольной формы) непрерывного или периодического действия. На аноде происходит окисление цианидов в малотоксичные и нетоксичные продукты (цианаты, карбонаты, диоксид углерода, азот), а на катоде — разряд ионов водорода с образованием газообразного водорода и разряд ионов меди, цинка, кадмия,
образующихся при диссоциации комплексных анионов с содержанием CN-группы. На рис. 10.22 показана технологическая схема установки для электрохимического окисления сточных вод. В ее состав входят сборный резервуар 7, бак 2 для приготовления концентрированного раствора NaCl, электролизер 3 с источником постоянного напряжения 7. Очищенная от цианидов сточная вода выходит по трубопроводу 4, а при необходимости ее доочистки по трубопроводу 5 вновь направляется в сборный резервуар 7. Для интенсификации процесса окисления в электролизер 3 по трубопроводу 6 подают сжатый воздух. Гиперфильтрация (обратный осмос) реализуется разделением растворов путем фильтрования их через мембраны, поры которых размером около 1 нм пропускают молекулы воды, задерживая гидратиро- ванные ионы солей или молекулы недиссоциированных соединений. По сравнению с другими методами очистки гиперфильтрация требует малых энергозатрат: установки для очистки конструктивно просты и компактны, легко автоматизируются; фильтрат имеет высокую степень чистоты и может быть использован в оборотных системах водоснабжения, а сконцентрированные примеси сточных вод легко утилизируются или уничтожаются.
Перенос воды и растворенного вещества через мембрану оценивается уравнениями: Q — кх{рр — A/?); F = к2Ас, где Q — расход воды через мембрану, м3/с; к\, к2 — коэффициенты проницаемости соответственно воды и растворенного вещества через конкретную мембрану; рр — рабочее давление на входе в мембрану, Па; Ар — разность 308 осмотических давлений раствора на входе в мембрану, Па; Ас — разность концентраций растворенного в воде вещества на входе в мембрану и выходе из нее, кг/м; F— масса растворенного вещества, переносимого через мембрану, кг. Для гиперфильтрации используют ацетатцеллюлозные, полиамидные и тому подобные полимерные мембраны с ресурсом работы 1...2 г. Селективность мембран по отношению к ионам различных веществ характеризуется следующим рядом: А13+ > Zn2+ > Cd2+ > Mg2+ > > Са2+ > Ва2+ > S042" > Na+ >F~ > K+ > СГ > Br" > Г > NO~3 > Н+. Эвапорация реализуется обработкой паром сточной воды с содержанием летучих органических веществ, которые переходят в паровую фазу и вместе с паром удаляются из сточной воды. Процесс эвапора- ции осуществляют в испарительных установках (рис. 10.23), в которых при протекании через эвапорационную колонну с насадками из колец Рашига навстречу потоку острого пара сточная вода нагревается до температуры 100°С. При этом содержащиеся в сточной воде летучие примеси переходят в паровую фазу и распределяются между двумя фазами (паром и водой) в соответствии с уравнением сп/св = у, где сп и св — концентрации примеси в паре и сточной воде, кг/м; у — коэффициент распределения. Для аммиака, этиламина, диэтила- мина, анилина и фенола, содержащихся в сточной воде, коэффициент распределения соответственно равен 13, 20, 43; 5,5 и 2. Концентрация примеси в сточной воде на выходе из эвапораци- онной колонны c» = cQ(w- 1)/(ще- 1), где с0 — концентрация примеси в исходной сточной воде, кг/м3; q — удельный расход пара, кг/кг; х = [paH(qy — 1)]/(bqy), здесь bcpf — эмпирическая постоянная насадки; Ъ — плотность орошения колонны водой, м3/м2; р — эмпирическая постоянная, м/с; а — удельная площадь поверхности насадки, м3/м2; Я—высота слоя насадки, м. Выпаривание, испарение и кристаллизацию используют для очистки небольших объемов сточной воды с большим содержанием летучих веществ. Биологическая очистка. Ее применяют для выделения тонкодисперсных и растворенных органических веществ. Она основана на способности микроорганизмов использовать для питания содержащиеся в сточных водах органические вещества (кислоты, спирты, белки, углеводы и т. п.). Процесс реализуется в две стадии, протекающие одновременно, но с различной скоростью: адсорбция из сточных вод тонкодисперсных и растворенных примесей органических веществ и разрушение адсорбированных веществ внутри клетки микроорганизмов при протекающих в них биохимических процессах (окислении или восстановлении). Обе стадии реализуются как в аэробных, так и в анаэробных условиях в зависимости от видов и свойств микроорганизмов. Биологическую очистку осуществляют в природных и искусственных условиях. Сточные воды в природных условиях очищают на полях фильтрации, полях орошения и в биологических прудах. Очистку и бытовых, и производственных сточных вод на полях фильтрации и полях орошения в настоящее время используют очень редко в связи с малой пропускной способностью единицы площади полей и непостоянством состава производственных сточных вод, а также из-за возможности попадания на поля токсичных для их микрофлоры примесей. Биологические пруды используют для очистки и доочистки сточных вод суточным расходом не более 6000 м3. Применяют пруды с естественной и искусственной аэрацией. Биологические фильтры широко используют для очистки и бытовых, и производственных сточных вод. В качестве фильтровального материала для загрузки биофильтров применяют шлак, щебень, керамзит, пластмассу, гравий и т. п. Существуют биофильтры с естественной подачей воздуха; их применяют для очистки сточных вод суточным расходом не более 1000 м3. Для очистки производственных сточных вод больших расходов и сильно концентрированных используют биофильтры с принудительной подачей воздуха (рис. 10.24).
Нормальный ход процесса биологической очистки сточных вод устанавливается после образования на загрузочном материале биофильтра биологической пленки, микроорганизмы которой адаптировались к органическим примесям сточных вод. Период адаптации обычно составляет 2...4 недели, хотя в отдельных случаях он может достигать нескольких месяцев. Для оценки состава сточных вод в процессе биологической очистки используют биологическую потребность воды в кислороде (БПК) — количество кислорода, необхо- димое для окисления всех органических примесеи, содержащихся в единице объема сточной воды. Объем загрузочного материала V= (La — L)/M, где LanLt— ВПК исходной и очищенной сточной воды, кг/м3; М— окислительная мощность биофильтра — масса кислорода, которая может быть получена в сутки с единицы объема загрузочного материала биофильтра, кг/(м3 • сут). Аэротенки, используемые для очистки больших расходов сточных вод, позволяют эффективно регулировать скорость и полноту протекающих в них биохимических процессов, что особенно важно для очистки промышленных сточных вод нестабильного состава. Окислительная мощность аэротенков составляет 0,5... 1,5 кг/м3 в сутки. В зависимости от состава примесей сточных вод и требуемой эффективности очистки применяют аэротенки с дифференцируемой подачей воздуха, аэротенки-смесители с дифференцируемой подачей сточной воды и аэротенки с регенераторами активного ила. При ВПК >0,5 кг/м3 используют аэротенки с дифференцируемой (сосредоточенной) подачей смеси сточной воды и активного ила в начале сооружения (рис. 10.25). Воздух, интенсифицирующий процесс окисления органических примесей, распределяется равномерно по всей длине аэротенка. Диспергирование воздуха в очищаемой сточной воде осуществляют механическими или пневматическими аэраторами. Окислительная мощность аэротенков существенным образом зависит от концентрации активного ила в сточной воде. При очистке производственных сточных вод концентрация ила обычно составляет 2...3 кг/м3 по сухому веществу. Окситенки обеспечивают более интенсивный процесс окисления органических примесей по сравнению с аэротенками за счет подачи в
Рис. 10.25. Технологическая схема аэротенка: 1 — трубопровод подачи исходной сточной воды; 2 — первичный отстойник; 3 — трубопровод подачи активного ила для повторного использования; 4 — аэротенк; 5 — трубопровод отвода отработанного ила; 6 — трубопровод отвода очищенной сточной воды; 7—вторичный отстойник; 8 — тру- бопровод подвода сжатого воздуха них технического кислорода и повышения концентрации активного ила. Для увеличения коэффициента использования подаваемого в объем сточной воды кислорода реактор окситенка герметизируют. Очищенная от органических примесей сточная вода из реактора поступает в илоотделитель, в котором происходит выделение из нее отработанного ила. При проектировании окситенков необходимо предусматривать мероприятия по обеспечению их пожаровзрывобезо- пасности с учетом вредных и опасных факторов, имеющих место при эксплуатации систем с использованием газообразного кислорода. 10.2.3. Питьевая вода и методы обеспечения ее качества Качество питьевой воды в настоящее время регламентируется СанПиН 2.1.4.1074—01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества». Указанный документ регламентирует качественные и количественные санитарно-токсикологические и органолеп- тические показатели воды: максимальное допустимое содержание вредных веществ, мутность, цветность, запах, вкус. Источниками питьевого водоснабжения могут быть поверхностные и подземные воды. В зависимости от степени загрязненности и качественного состава загрязнений воды в источниках применяют различные способы ее очистки для обеспечения нормативного качества, аналогичные способам, применяемым для очистки сточных вод, а также специальные методы, которые не применяют или применяют крайне редко при очистке сточных вод. К таким специальным методам относят прежде всего методы обеззараживания воды от болезнетворных бактерий, методы сорбционной очистки, опреснение и обес- соливание воды и ряд методов удаления из воды наиболее характерных примесей, например железа, марганца, диоксинов, галогенорга- нических соединений. Методы обеззараживания воды. Наиболее распространенным методом является обработка воды хлором (хлорирование воды). Хлор обладает широким спектром антимикробного действия. Для хлорирования применяют либо газообразный хлор, который подается в обеззараживаемую воду, либо твердые хлорсодержащие вещества, например гипохлорит натрия. Хотя хлорирование воды наиболее распространенный и дешевый способ ее обеззараживания, он обладает рядом существенных недостатков. Во-первых, хлор — сильное вещество и его хранение в больших количествах в газообразном или сжиженном виде на станциях подготовки питьевой воды представляет серьезную опасность и требует особых мер обеспечения безопасности. Во-вто- рых, избыточный хлор, введенный в воду, в свободном состоянии сам представляет серьезную опасность для человека. Он также может вступать в реакцию с оставшимися в воде микропримесями органических соединений с образованием крайне токсичных веществ, например хлороформа, который обладает канцерогенным действием. Подобные реакции ускоряют при нагреве и кипячении воды, поэтому перехлорирование воды представляет опасность, для уменьшения которой необходимо перед кипячением отстаивать воду в приоткрытой емкости для удаления растворенного в ней избыточного хлора. Другим, более распространенным и прогрессивным методом обеззараживания воды является озонирование. Применение озона в качестве дезинфеканта воды лишено недостатков, связанных с использованием хлора. Кроме обеззараживания, озон устраняет запахи, обесцвечивает воду и улучшает ее вкусовые качества. Введение озона в воду не изменяет ее минеральный состав, щелочность, содержание свободной углекислоты. Такое действие озона связано с его исключительно высоким окислительным потенциалом. Переозонирование воды, в отличие от перехлорирования, не представляет опасности, так как озон нестабилен и быстро распадается с образованием кислорода, повышенное содержание которого в воде полезно. Однако в последние годы отмечены недостатки озонирования, связанные с тем, что при содержании в воде ионов брома он может окисляться озоном с образованием окислов брома (бромат-ионов), которые токсичны. Поэтому в настоящее время для избежания образования броматов вводят более жесткие технологические режимы озонирования. Озонирование — более дорогой метод обеззараживания воды, но более эффективный. Для его осуществления необходимы на станциях водо- подготовки озонаторные установки, в которых озон получают путем расщепления молекулы кислорода под действием высоковольтных электрических разрядов (подобно тому, как воздух атмосферы озонируется под действием разрядов молнии). Наряду с указанными выше реагентными методами все большее распространение получают безреагентные методы, например, обеззараживание воды ультрафиолетовым излучением. Бактерицидным действием обладает ультрафиолетовое излучение с длиной волны 200—295 нм, которое приводит к уничтожению бактерий, вирусов, водорослей и других микроорганизмов, присутствующих в воде. В отличие от хлорирования и озонирования ультрафиолетовое излучение не обладает побочными вредными эффектами, связанными с возможным изменением химического состава и появлением токсичных веществ. Основное требование при УФ-обработке — прозрачность воды, которая не является существенным ограничением в системе во- доподготовки, так как устранение мутности воды обычно достигается в предварительных ступенях ее обработки. К безреагентным методам относят термическую обработку (5— 10-минутное кипячение, широко используемое в быту), обработку ионизирующими облучениями (рентгеновское облучение), токами высокой частоты. Сорбционная очистка питьевой воды. Сорбционная очистка — улавливание загрязнений поверхностью высокопористого твердого материала. Наиболее распространенным адсорбентом являются активированные угли или активированные древесные угли (АУ). Кроме улавливания вредных примесей, с высокой эффективностью АУ дехлорируют воду. Опреснение и обессоливание воды применяют для удаления из воды солей, например, при опреснении морской воды. Наиболее распространенными методами являются дистилляция, обратный осмос, электродиализ и ионный обмен, описанный выше. Дистилляция основана на нагреве воды, ее испарении и последующей конденсации паров. В образующемся конденсате практически отсутствуют растворенные соли. Обратный осмос — процесс обратный прямому осмосу — заключается в том, что если разделить закрытый сосуд полупроницаемой мембраной из специального материала (например, ацетатцеллюло- зы) на две части, в одной из которой будут находиться растворы солей с различной концентрацией, то начинается процесс выравнивания концентрации, заключающийся в диффузии растворителя через мембрану менее концентрированного раствора в более концентрированный. При этом повышается давление в части сосуда с более концентрированным раствором. Процесс диффузии продолжается до тех пор, пока давление не компенсирует диффузионный напор. Такое давление называют осмотическим давлением. Например, для сочетания морская вода и дистиллированная вода осмотическое давление может достигать 25 • 105 Па. Если в части сосуда с более высокой концентрацией соли создать давление, превышающее осмотическое, то начинается процесс диффузии растворителя из концентрированного раствора в чистый (явление обратного осмоса). При этом чистая вода проникает через мембрану, а соли остаются в растворе в концентрированном виде. На этом процессе основаны аппараты обратного осмоса. Электродиализом называют процесс переноса ионов через мембрану под действием приложенного к ней электрического поля. Для очистки воды используют электрохимически активные ионитовые мембраны. Наиболее распространены гетерогенные ионитовые мембраны, представляющие собой тонкие пленки, изготовленные из размельченной в порошок ионообменной смолы. В зависимости от того, из какой смолы сделана мембрана, различают катионитовые и анио- нитовые мембраны. Первые способны пропускать лишь катионы вредных примесей, а вторые — анионы. Водоподготовку осуществляют на централизованных станциях, на которых приводят последовательную очистку воды в аппаратах различных типов в зависимости от состава загрязнения источника водоснабжения. При отсутствии системы централизованного водоснабжения применяют компактные модульные установки, рассчитанные на меньшую производительность и использующие указанные методы очистки. В быту используют малогабаритные очистные аппараты для до- очистки воды после водоподготовки на централизованных системах водоснабжения. Такая доочистка является крайне желательной, так как централизованные системы водоподготовки могут иметь недостатки, а вода после них при подаче к потребителю может повторно загрязняться окалиной, тяжелыми металлами. Особенно это характерно при подаче воды по старым изношенным водоводам. Бытовые фильтры имеют различное устройство, в зависимости от которого удаляют нерастворимые соединения (песок, коллоиды, частицы ржавчины и т. д.), растворенное и нерастворенное железо, марганец, сероводород. Сорбционные фильтры служат для удаления остаточного хлора, растворенных газов, органических соединений, улучшения органолептических показателей. Существуют также ультрафиолетовые стерилизаторы; обратноосмотические, ионообменные и электрохимические фильтры. 10.3. ЗАЩИТА ЗЕМЕЛЬ 10.3.1. Обращение с отходами Радикальное решение проблемы защиты земель от отходов возможно при разработке новых технологий и малоотходных производств. Для обобщения особенностей малоотходного производства можно выделить ряд взаимосвязанных принципов, лежащих в его основе.
Ключевым в этом ряду является принцип системности (рис. 10.26, а). В соответствии с этим принципом каждый отдельный процесс или производство рассматриваются как элемент более сложной индустриальной системы. Так, например, отходы нефтехимии — шламы, теплоэнергетики — золошлаковая смесь, химической промышлен- Другой важнейший принцип — принцип комплексности использования сырьевых ресурсов (см. рис. 10.26, б). Практически все используемое сырье многокомпонентно, и в среднем на 1/3 его стоимости составляют сопутствующие элементы. Так, уже в настоящее время практически все серебро, висмут, платину, более 20 % золота и около 30 % серы получают «попутно» при переработке комплексных руд. Повышение комплексности использования ресурсов, например, в лесопромышленном производстве, имеет не только экологическое, но и важное экономическое значение. Третьим принципом создания малоотходного производства является принцип цикличности материальных потоков (рециклинг) (см. рис. 10.26, в), где важную роль играют замкнутые водооборотные циклы, рециркуляция газовых потоков, утилизация твердых отходов. Во всем мире это направление приобретает весьма важное значение. Уже сейчас технически возможно использовать 2/3 образующихся отходов, причем капитальные вложения при переработке вторичного сырья примерно в 4 раза меньше, чем первичного. Эколого-экономиче- ский эффект использования вторичного сырья на примере трех распространенных видов отходов представлен в табл. 10.6.
Не нашли, что искали? Воспользуйтесь поиском:
|