Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Базис линейного пространства и координаты вектора в базисе.




Совокупность векторов называют базисом в , если

1о. вектора – линейно независимы;

2о. для найдутся . (1)

При этом равенство (1) называется разложением элемента по базису , а называются координатами относительно базиса .

Теорема: (о единственности разложения по базису). Любой элемент может быть единственным образом разложен по базису , т.е. координаты вектора относительно базиса определяются однозначно.

Доказательство. Пусть и . Тогда . В силу линейной независимости . ч.т.д.

Теорема: (операции над векторами, заданными своими координатами). При сложении любых двух векторов и их координаты (относительно любого фиксированного базиса в ) складываются; при умножении на , все координаты вектора умножаются на это число.

Доказательство. Пусть - базис в , , . Тогда в силу аксиом линейного пространства , . В силу единственности разложения по базису что теорема доказана.

Примеры. 1о. Базис в - любое ненулевое число.

2о. . Базис образуют матрицы , , …, с одним единичным элементом.

3о. – множество многочленов степени не выше n. Базис: , , …, .






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных