ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Корреляция. Коэффициенты корреляцииКорреляция (корреляционная зависимость) — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин. В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической[3]. Впервые в научный оборот термин «корреляция» ввёл французский палеонтолог Жорж Кювье в XVIII веке. Он разработал «закон корреляции» частей и органов живых существ, с помощью которого можно восстановить облик ископаемого животного, имея в распоряжении лишь часть его останков. В статистике слово «корреляция» первым стал использовать английский биолог и статистик Фрэнсис Гальтон в конце XIX века. Теснота связи изучаемых явлений оценивается при использовании линейной регрессии с помощью линейного коэффициента корреляции : Линейный коэффициент корреляции принимает значение в пределах от (–1) до 1, т. е. (–1) < < 1. Чем ближе к единице, тем связь теснее. Качественная оценка тесноты связи величин x и y может быть выявлена на основе шкалы Чеддока. Линейный коэффициент корреляции характеризует степень тесноты не всякой, а только линейной зависимости. При нелинейной зависимости между явлениями линейный коэффициент корреляции теряет смысл, и для измерения тесноты связи применяют так называемый индекс корреляции . (): Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными. В первом случае предполагается, что мы можем определить только наличие или отсутствие связи, а во втором – также и ее направление. Если предполагается, что на значениях переменных задано отношение строгого порядка, то отрицательная корреляция – корреляция, при которой увеличение одной переменной связано с уменьшением другой. При этом коэффициент корреляции будет отрицательным. Положительная корреляция в таких условиях — это такая связь, при которой увеличение одной переменной связано с увеличением другой переменной. Возможна также ситуация отсутствия статистической взаимосвязи – например, для независимых случайных величин. Корреляционный анализ – метод обработки статистических данных, с помощью которого измеряется теснота связи между двумя или более переменными. Корреляционный анализ тесно связан с регрессионным анализом (также часто встречается термин «корреляционно-регрессионный анализ», который является более общим статистическим понятием), с его помощью определяют необходимость включения тех или иных факторов в уравнение множественной регрессии, а также оценивают полученное уравнение регрессии на соответствие выявленным связям (используя коэффициент детерминации).
Не нашли, что искали? Воспользуйтесь поиском:
|